--- tags: research --- # RZ space learning seminar - Location: HU1018 - Time: Wed 13:00-14:00 ## Timetable Time|Speaker|Notes -|-|- Oct.9|Qirui Li|[Catier Modules](/hYuVO_pyQaKuzKDJn_Ticw) Oct. 16|Qirui Li|[Local Catier Theory](/4AeJG87TQLOLHSSa3HpxKw) Oct. 23|Qirui Li|[Dieudonne Modules and de-Rham cohomology](/Z_TJrOUGQAm0FjnU37kZPA) ## Learning Goal In this seminar, we want to understand part of the book [RZ] by Rapoport and Zink. We will study the definition and properties of the period morphism $$ \breve π_1 : \breve M^{rig} \rightarrow \breve F^{wa} $$ which is a map from generic fiber of a certain moduli of p-divisible groups to weakly admissible locus arises as a subspace form flag variety. We would like to see the theory as explicitly as possible. An explicit construction of Dieudonne Module would be displayed. ## Tentative Schedule <!-- ### Introduction #### An example of period morphism for formal modules A formal module of height 2. Say a formal module defined over the thickending. The map from tangent space to the Dieudonne module by reduction. - Define a Dieudonne Module of a formal group explicitly, G formal module over k, the functions on it can be described by the ring k[[X]] The group law is given by some power-series X[+]Y = X + Y +... This is say that for any moving particles on $G$, say with the time $X=f(t)$, we can add moving particles, adding the position of the two particle we obtain a thrid particle moving on the formal module. To define Dieudonne Module, we consider the set of elements $$1+tk[[X]][[t]]$$ elements of it looks like $$ 1+Xt+(X^2+X^3+\cdots)t^2+\cdots $$ This element can thinking as Deformations of moving particles. Those elements can be written as in the form $$ (1+f_1(X)t)(1+f_2(X)t^2)(1+f_3(X)t^3)\cdots $$ Take primitive elemnts and form a Witt module, - Translate elements in Dieudonne Module in various ways. - as p-typical curves. as group invariant $H^1$ class. Period morphisms. Define a map from Tangent space of formal group to Dieudonne Module, it is an analogue of Hodge-Tate period morphisms. Hodge Tate period map. Say something about Dieudonne Module can recover p-divisible groups. --> ### Explicit understanding of p-divisible groups(4 weeks) 1. Breif introduction to p-divisible groups([[2]](#References)) 2. Catier Theory for finite flat group schemes ([[1]](#References)) 3. Local Catier-Dieudonne Theory([[1]](#References)) 4. Grothendick Messing Theory ### Understanding the RZ space (4weeks) 6. Moduli space of quasi-isogenies 7. Rapporport Zink space 8. Local Models 9. Some rigid geometry This seminar may extend to the next semester ### Period morphisms (4 weeks) 10. The period morphisms 11. The image of period morphisms 12. Admissible locus # References [[1]](https://pdfs.semanticscholar.org/b86c/9270ab92c0cca0cc1ff562cf578c421f9a99.pdf?_ga=2.144141877.126651306.1569957241-393231388.1569957241) Notes on Catier theory, C.Chai [[2]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.7566&rep=rep1&type=pdf) p-Divisible groups, J.T. Tate [[3]](https://www.math.leidenuniv.nl/scripties/wang.pdf) Moduli space of p-divisible groups and Period Morphisms # Paticipants: ``` kennethct.chiu@mail.utoronto.ca; abhishek@math.utoronto.ca; zqian@math.utoronto.ca; Ali Cheraghi <ali.cheraghi@mail.utoronto.ca>; heejong.lee@mail.utoronto.ca ```