$$ (x^n)'= n x^{n-1} $$ $$ (x^\infty)'=\infty x^{\infty-1}=\infty x^{\infty} $$ $$ (x^n)'= n x^{n-1} $$ $$ \left(\left(\frac xn\right)^n\right)'=\left(\frac{x}n\right)^{n-1} $$ $$ \left(\left(\frac x\infty\right)^\infty\right)'=\left(\frac x\infty\right)^\infty $$ if $$x=2$$, what is $\frac x\infty=0$ Then $0^\infty=0$ I can think about $$ \left(\left(\frac {x+\infty}\infty\right)^\infty\right)'=\left(\frac {x+\infty}\infty\right)^\infty=e^x $$ $$ \left(\frac {x+\infty}\infty\right)^\infty=\left(\frac {x}\infty+1\right)^\infty $$ $$ \lim_{n\rightarrow \infty}\left(1+\frac xn\right)^n=e^x $$ $$ e^x\approx x^\infty $$ ## Think about inverse function What is the inverse function of $f(x)=x^n$? $$ f^{-1}(x)=x^{\frac1n} $$ Now if $f(x)=x^\infty$, what is the inverse function of $f(x)$ $$ f^{-1}(x)=x^0 $$ Then the derivative of $f^{-1}(x)$ should related to $x^{-1}$ in some sense. If $f(x)=e^x$, it is like a polynomial of degree $\infty$ Then $f^{-1}(x)=\ln x$, it is like a polynomial of degree $0$ So the derivative of $\ln x$ should be something like $x^{-1}$. ## Let's try to do this step by step $$ y=e^x=\left(\frac{x-\infty}\infty\right)^\infty $$ $$ y^0=\frac{x-\infty}{\infty} $$ $$ \infty y^0=x-\infty $$ $$ x=\infty y^0+\infty $$ Then the logarithm just looks like $$\ln y= \infty y^0+\infty$$ $$\ln x= \infty x^0+\infty$$ When you take derivative (reminder: $(x^n)'=nx^{n-1}$) $$ (\ln x)'=\infty 0 y^{-1}=y^{-1} $$ </br></br></br></br></br></br></br></br></br></br></br></br></br>