--- title: Group(群) 定義 tags: crypto lang: zh_tw --- * [筆記總覽](https://hackmd.io/@LJP/rkerFdnqS) [TOC] # 符號定義 - $Z = \{ … , −3, −2, −1, 0, 1, 2, 3, … \}$ of integers - $Z_n = \{0, 1, . . . , n – 1\}$ - $Z_n^∗ = \{1,2,3, … , n − 1\}$ - $N = \{0, 1, 2, 3, … \}$ of non-negative integers - $P = \{1, 2, 3, … \}$ of positive integers - Group(群) - Ring(環) - Field(體) # Group(群) 定義 A group $(G,\ \bullet)$ is a set $G$ with an operation $\bullet$, such that the following conditions are satisfied: - Closure - $a\ \bullet\ b\in G$ for all $a,\ b\in G$ - Associativity - $a\ \bullet(b\ \bullet\ c)\ =\ (a\ \bullet\ b)\ \bullet\ c$ for all $a,\ b,\ c\in G$ - Identity - there is an element $e\in G$ such that $a\ =\ a\ \bullet\ e\ =\ e\ \bullet\ a$ - Inverse - for each $a\in G$, there is an element $b\in G$ such that $a\ \bullet\ b\ =\ b\ \bullet\ a\ =\ e$ $\star$ If commutative $a\ \bullet\ b\ =\ b\ \bullet\ a$ - then forms an **abelian group** ## 例子 - $Z,\ Q,\ R,\ C$ with $+$ - 符合 Closure, 怎麼加都在 set 裡面 - 符合 Associativity, 先結合哪一個沒差 - 符合 Identity, 加 0 都還是自己 - 符合 Inverse, 乘上負號就能找到反元素 - $Q^*,\ R^*,\ C^*$ with $\times$ - 符合 Closure, 怎麼乘都在 set 裡面 - 符合 Associativity, 先結合哪一個沒差 - 符合 Identity, 乘 1 都還是自己 - 符合 Inverse, 自己的倒數就是反元素 - $\{1, -1\}$ with $\times$ - $Z_6$ with $+\ mod\ 6$ ## Proposition - $(a\ \times\ b)^{-1}=\ b^{-1}\ \times\ a^{-1}$ - Proof: $\begin{split}(a\ \times\ b)\times(a\ \times\ b)^{-1}&=1\\ a^{-1}\times a\ \times\ b\times(a\ \times\ b)^{-1}&=a^{-1}\\ b\times(a\ \times\ b)^{-1}&=a^{-1}\\ b^{-1}\times b\times(a\ \times\ b)^{-1}&=b^{-1}\times a^{-1}\\ (a\ \times\ b)^{-1}&=b^{-1}\times a^{-1} \end{split}$ - $(a^{-1})^{-1}=a$ - Proof: $\begin{split}(a^{-1})\times(a^{-1})^{-1}&=1\\ a\times(a^{-1})\times(a^{-1})^{-1}&=a\\ (a^{-1})^{-1}&=a\\ \end{split}$