--- title: Euler Theorem tags: crypto lang: zh_tw --- * [筆記總覽](https://hackmd.io/@LJP/rkerFdnqS) [TOC] # Euler's Theorem 參考 [Euler’s Theorem: proof by modular arithmetic](https://mathlesstraveled.com/2017/11/30/eulers-theorem-proof-by-modular-arithmetic/) 請先閱讀前一章節 [Euler's phi Function](https://hackmd.io/@LJP/r1ujih8IY) 若 $a, m$ 互質, 則: $$ a^{\phi(m)} \equiv 1\ (mod\ m) $$ > 加強版的 [Fermat's Little Theorem](https://hackmd.io/@LJP/ry_Ei3L8Y) ## Proof $M$ 為在 $Z_M^*$ 中所有跟 $m$ 互質的數字的集合 $M = \{M_1, M_2, ..., M_{\phi(m)}\}, x \perp m, x \in M$ 定義 $A$ 為 $M$ 的所有元素都乘上 $a$ 的集合 $A = \{A_1 = aM_1, A_2 = aM_2, ..., A_{\phi(m)} = aM_{\phi(m)}\}$ 因為 $a, m$ 互質,將 $A$ 中所有元素都 $mod\ m$,將這個新集合叫做 $A^{'}$ 會發現 $A^{'}, M$ 這兩個集合一樣 ! 根據上面特性,以下式子成立 $$ \prod_{i = 1}^{\phi(m)}A_i \equiv \prod_{i = 1}^{\phi(m)}M_i\ (mod\ m) $$ 而 $\prod_{i = 1}^{\phi(m)}A_i$ 可以提出 $\phi(m)$ 個 $a$ $$ \prod_{i = 1}^{\phi(m)}A_i = a^{\phi(m)}\prod_{i = 1}^{\phi(m)}M_i $$ $$ \begin{split} \prod_{i = 1}^{\phi(m)}A_i &\equiv \prod_{i = 1}^{\phi(m)}M_i\ (mod\ m) \\ a^{\phi(m)}\prod_{i = 1}^{\phi(m)}M_i &\equiv \prod_{i = 1}^{\phi(m)}M_i\ (mod\ m) \\ a^{\phi(m)} &\equiv 1\ (mod\ m) \\ \end{split} $$ 得證