--- title: Ring(環)定義 tags: crypto lang: zh_tw --- * [筆記總覽](https://hackmd.io/@LJP/rkerFdnqS) [TOC] # Ring(環) 定義 A ring $(R,+,\times)$ is a set R with two binary operations $+$ and $\times$ such that - $(R,+)$ is an **abelian group** - Closed under $\times$: - $a\times b\in R$ for all $a,\ b\in R$ - Associative under $\times$ - $a\ \times(b\ \times\ c)\ =\ (a\ \times\ b)\ \times\ c$ for all $a,\ b,\ c\in G$ - Distributive laws - $a\times(b+c)=a\times b+a\times c$ - $(a+b)\times c=a\times c+b\times c$ - for all $a,\ b,\ c\in R$ $\star$ **這裡的加法乘法定義跟一般的加法乘法不同** 根據 [wiki](https://en.wikipedia.org/wiki/Ring_(mathematics)#Example:_Integers_modulo_4) - The sum ${\displaystyle {\overline {x}}+{\overline {y}}}$ is the remainder when the integer $x+y$ is divided by rank - The product ${\displaystyle {\overline {x}}\times{\overline {y}}}$ is the remainder when the integer $x\times y$ is divided by rank 簡單說就是先加\乘後取餘數