<style> .definition{ font-size:30px; font-weight:650; } .theorem{ font-size:25px; font-weight:650; } </style> # Completeness of the real numbers :::success <span class="definition">Deddkind Cut</span> Let $A,B$ be two subsets of an ordered set $P$ We say that $(A,B)$ is a Deddkind cut of $P$ if $A,B$ satisfy: $A\not=\varnothing\not=B$ $A\cup B=P,A\cap B=\varnothing$ $\forall a\in A,b\in B\implies a<b$ ::: :::success <span class="definition">Deddkind Cut on real number</span> Let $(A,B)$ be a Deddkind Cut on $\mathbb{R}$ Then exactly one of the following statements hold : 1. $\max A$ exists and $\min B$ doesn't exist. 2. $\max A$ doesn't exist and $\min B$ exists. where $\max A$ means $x=\max A$ if and only if $x\in A$ and $a\ge x\implies a=x$ and $\min B$ means $y=\min B$ if and only if $y\in B$ and $b\le y\implies b=y$ ::: :::success <span class="definition">Least upper bound theorem</span> (Equivalent proposition on $\mathbb{R}$) Let $S$ be a non-empty subset of $\mathbb{R}$ If $S$ is bounded above, then $S$ has a least upper bound. i.e. $\sup S$ exists. ::: :::success <span class="definition">Nested Intervals Theorem</span> Let $\{I_n\}_{n=1}^{\infty}=\{[a_n,b_n]\}_{n=1}^{\infty}$ be a sequence satisfying (1) $\forall n\in\mathbb{N},I_{n+1}\subset I_n$ (2) $\displaystyle\bigcap_{n=1}^{\infty}I_n:=[\displaystyle\lim_{n\to\infty}a_n,\displaystyle\lim_{n\to\infty}b_n]\not=\varnothing$ If $\displaystyle\lim_{n\to\infty}(b_n-a_n):=\displaystyle\lim_{n\to\infty}\text{length}(I_n)=0$, then $\exists !r\in\mathbb{R},s.t.\{r\}=\displaystyle\bigcap_{n=1}^{\infty}I_n$ ::: :::success <span class="definition">Monotonic Convergence Sequence</span> A monotonic sequence is a sequence that is either increasing or decreasing. A monotoinc sequence is bounded if and only if it converges. ::: ## Rational numbers are not complete We can use the above 4 axioms to show that $\mathbb{Q}$ is not complete. We form a Deddkind Cut on the number $p$ where $p^2=2$. Let $A=\{q\in\mathbb{Q}\mid(q\le0)\lor(q^2\le2)\},B=\{q\in\mathbb{Q}\mid (q>0)\land(q^2>2)\}$ Check: $A\cap B=\varnothing$ $A\cap B=\{q\in\mathbb{Q}\mid[(q\le0)\lor(q^2\le2)]\land[(q>0)\land(q^2>2)]\}$ $[(q\le0)\lor(q^2\le2)]\land[(q>0)\land(q^2>2)]\equiv[(q\le0)\land(q>0)\land(q^2>2)]\lor[(q^2\le2)\land(q>0)\land(q^2>2)]$ Since $q\le0\land q>0$ and $(q^2\le2)\land(q^2>2)$ are always false, there is no $q\in\mathbb{Q}$ such that $q\in A\cap B$ So $A\cap B=\varnothing$ Check: $A\cup B=\mathbb{Q}$ $A\cup B=\{q\in\mathbb{Q}\mid[(q\le0)\lor(q^2\le2)]\lor[(q>0)\land(q^2>2)]\}$ $[(q\le0)\lor(q^2\le2)]\lor[(q>0)\land(q^2>2)]\equiv[(q\le0)\lor(q^2\le2)\lor(q>0)]\land[(q^2>2)\lor(q^2\le2)\lor(q>0)]$ Since $q\le0\lor q>0$ and $q^2>2\lor q^2\le2$ are both tautologies, $\forall q\in\mathbb{Q}\iff q\in A\cup B$ So $A\cup B=\mathbb{Q}$ Check: $\forall a\in A,b\in B,a<b$ Let $q_1\in A,q_2\in B$ Case 1:$q_1\le0$ Since $q_2>0$, $q_2>q_1$ Case 2:${q_1}^2\le2$ Since ${q_2}^2>2$ and $q_2>0$, ${q_2}^2>{q_1}^2\implies q_2>q_1$ So $(A,B)$ forms a Deddkind Cut on the number $p$ where $p^2=2$. Now we prove that $\max{A}$ and $\min{B}$ don't exist. :::warning Suppose $\alpha\in A$ $\alpha\in A\iff(\alpha\le 0)\lor(\alpha^2\le 2)$ If $\alpha\le 1$ and then take $1\in A$, since $1^2\le 2$, so such $\alpha$ must not be the greatest element of $A$. So $\alpha>1$ and $\alpha^2\le2$ Since $\not\exists q\in\mathbb{Q},s.t.\ q^2=2$, $\alpha^2<2$ Claim: Let $x=\dfrac{2}{\dfrac{\alpha}{2}+\dfrac{1}{\alpha}}$(How do we know?), then $x\in A$ and $x>\alpha$ (How do we know?) $\dfrac{\dfrac{2}{\alpha}+\alpha}{2}\ge\sqrt{2}$ and $\alpha<\sqrt{2}$, so the equality won't hold. We can take the reciprocal of $\dfrac{\dfrac{2}{\alpha}+\alpha}{2}$ then $\dfrac{2}{\dfrac{2}{\alpha}+\alpha}<\dfrac{\sqrt{2}}{2}$ So we multiply both sides by $2$, we get a number $x$ that satisfies $x^2<2$ Then we can check that $x>\alpha$, then the proof will be done. $x\in\mathbb{Q}$ is clear $x-\alpha=\dfrac{2}{\dfrac{\alpha}{2}+\dfrac{1}{\alpha}}-\alpha=\dfrac{4\alpha}{\alpha^2+2}-\alpha=\dfrac{\alpha(2-\alpha^2)}{\alpha^2+1}$ Since $1<\alpha$ and $\alpha^2<2$, $2-\alpha^2>0$ Therefore $x-\alpha=\dfrac{\alpha^2(3-\alpha)}{\alpha^2+1}>0\iff x>\alpha$ To show that $x^2<2$, we prove that $\dfrac{x^2}{2}<1$ $\dfrac{x^2}{2}=\dfrac{2}{(\dfrac{\alpha}{2}+\dfrac{1}{\alpha})^2}=\dfrac{2}{\dfrac{\alpha^2}{4}+1+\dfrac{1}{\alpha^2}}$ Since $\dfrac{\alpha^2}{4}+\dfrac{1}{\alpha^2}\ge2\sqrt{\dfrac{1}{4}}=1$ Suppose that $\dfrac{\alpha^2}{4}+\dfrac{1}{\alpha^2}=1$, then $\dfrac{\alpha^2}{4}=\dfrac{1}{\alpha^2}$ would lead to a contradiction saying that $\alpha^2=2$ So $\dfrac{\alpha^2}{4}+\dfrac{1}{\alpha^2}>1\implies\dfrac{\alpha^2}{4}+\dfrac{1}{\alpha^2}+1>2$ Therefore $\dfrac{x^2}{2}<1\iff x^2<2$ So $x\in A$ and $x>\alpha$. Hence $\max{A}$ doesn't exist. ::: :::warning Suppose $\min B$ exists, call it $\beta$ Let $y=\dfrac{1}{\beta}+\dfrac{\beta}{2}\in\mathbb{Q}$ Since $y\ge2\sqrt{\dfrac{1}{2}}=\sqrt{2}$ and $\dfrac{1}{\beta}\not=\dfrac{\beta}{2}$, $y^2>2$ And since $\beta^2>2\implies\beta>\dfrac{2}{\beta}\implies\dfrac{\beta}{2}>\dfrac{1}{\beta}\implies\beta>\dfrac{1}{\beta}+\dfrac{\beta}{2}=y$ So $y\in B$ and $y<\beta$, $\beta\not=\min{B}$ is a contradiction. Therefore $\min{B}$ doesn't exist. ::: Thus we know that if we form a Deddkind cut on $\mathbb{Q}$, the completeness doesn't necessarily hold. # Why does any real number can be represented in decimal? For this problem, we first define what exactly is the decimal representation of a number. :::success <span class="definition">Def</span> Let $x$ be a number, the decimal representation (if legal) of $x$ is $x=\pm N.a_1a_2a_3\dots$ where $N\in\mathbb{N},a_k\in\{0,1,2,3,4,5,6,7,8,9\},\forall k\in\mathbb{N}$ This representation can be written as the infinite series $x=\pm N+(\displaystyle\sum_{k=1}^{\infty}a_k(10)^{-k})$ ::: Notation $\mathbb{R}_{>0}=\{x\in\mathbb{R}\mid x>0\}$ :::info <span class="theorem">Thm1.1</span> $\forall x\in\mathbb{R}_{>0},\exists n\in\mathbb{N},s.t.\ nx>1$ <span class="theorem">Cor1</span>Let $y\in\mathbb{R}$ $\forall x\in\mathbb{R}_{>0},\exists n\in\mathbb{N},s.t.\ nx>y$ <span class="theorem">Cor2</span> $\forall x\in\mathbb{R}_{>0},\exists N\in\mathbb{N},s.t.\ \forall n\in\mathbb{N}\land n>N,n>x$ ::: :::danger $pf:$ Suppose $\exists x\in\mathbb{R}_{>0},s.t.\ \forall n\in\mathbb{N},nx\le 1$ Let $S=\{nx\mid n\in\mathbb{N}\}$ Since $\forall n\in\mathbb{N},nx\le 1$, $\sup S$ exists, call it $\alpha$. $\alpha-x<\alpha$, so $\exists m\in\mathbb{N},s.t.\alpha-x<mx$. But $(m+1)x\in S$ ($S$ is inductive) and $(m+1)x>\alpha$ is a contradiction. Therefore $\forall x\in\mathbb{R}_{>0},s.t.\ \exists n\in\mathbb{N},nx>1$ For corollary 1, simply replace $1$ with $y$. For corollary 2 $\forall x\in\mathbb{R}_{>0},\exists N\in\mathbb{N},s.t.\ N>x$ Since $n>N\implies n>N>x$. Therefore $\forall x\in\mathbb{R}_{>0},\exists N\in\mathbb{N},s.t.\ \forall n\in\mathbb{N}\land n>N,n>x$ ::: :::info <span class="theorem">Thm1.2</span> $\forall x\in\mathbb{R}_{>0},\exists n\in\mathbb{N},s.t.\ x\in[n-1,n]$ ::: :::danger $pf:$ For $1>0,\exists m\in\mathbb{N},s.t. 1\times m=m>x$ Let $S=\{m\in\mathbb{N}\mid m>x\}$ By well-ordereing principle of the natrual numbers, suppose $n$ is the least element of $S$ So $n-1\not\in S\iff n-1\le x$ Therefore $\forall x\in\mathbb{R}_{>0},\exists n\in\mathbb{N},s.t.\ x\in[n-1,n]$. ::: :::info <span class="theorem">Thm1.3</span> $\forall x\in\mathbb{R},\exists k\in\mathbb{Z},s.t.\ x\in[k-1,k]$ ::: This theorem is trivial since we can simply multiply the inequality by $-1$ to obtain the case where $x<0$ :::info <span class="theorem">Thm1.4</span> If a number $x$ can be written as a unique decimal representation, then $x\in\mathbb{R}$ ::: :::danger $pf:$ It sufficies to prove that $0.a_1a_2\dots a_n\dots$ is a real number, since any real number can be written as the sum of an integer and $0.a_1a_2\dots a_n\dots$ by theorem 1.3. Since $\mathbb{R}$ is a field and $\mathbb{Z}\subseteq\mathbb{R}$, so if $0.a_1a_2\dots a_n\dots$ is a real number, then $x$ is a real number. Let $S_n:=\displaystyle\sum_{k=1}^{n}\dfrac{a_k}{10^k}$ Then $S_n$ is a monotonic convergence sequence. Check: $S_n$ is non-decreasing Since $S_n-S_{n-1}=\dfrac{a_n}{10^n}$ and $a_n\in\{0,1,2,3,4,5,6,7,8,9\}$ We have that $S_n-S_{n-1}\ge0$, hence $S_n$ is monotonic. Check: $S_n$ is bounded Since $0\le\dfrac{a_k}{10^k}\le\dfrac{9}{10^k}$ $0\le S_n\le\displaystyle\sum_{k=1}^{n}\dfrac{9}{10^k}=\dfrac{\dfrac{9}{10}(1-\dfrac{1}{10^n})}{1-\dfrac{1}{10}}$ Hence $\displaystyle\lim_{n\to\infty}0\le\lim_{n\to\infty}S_n\le\lim_{n\to\infty}\dfrac{\dfrac{9}{10}(1-\dfrac{1}{10^n})}{1-\dfrac{1}{10}}=1$, $S_n$ is bounded above. Therefore by the completeness of the real number, we know that $\displaystyle\lim_{n\to\infty}S_n=\displaystyle\sum_{k=1}^{\infty}\dfrac{a_k}{10^k}$ converges to a real number. :::