# Flask網頁
```
import os
import numpy as np
import pandas as pd
import time
from sklearn.svm import SVC
from sklearn.externals import joblib
from sklearn.metrics import classification_report
import load_svm_model
from flask import Flask, request,render_template
from flask_uploads import UploadSet, configure_uploads, IMAGES,patch_request_class
app = Flask(__name__)
app.config['UPLOADED_PHOTOS_DEST'] = os.getcwd()
photos = UploadSet('photos', IMAGES)
configure_uploads(app, photos)
patch_request_class(app)
html = '''
<!DOCTYPE html>
<title>Upload File</title>
<h1>image upload</h1>
<form method=post enctype=multipart/form-data>
<input type=file name=photo>
<input type=submit value=上傳>
</form>
'''
@app.route('/', methods=['GET', 'POST'])
def upload_file():
if request.method == 'POST' and 'photo' in request.files:
filename = photos.save(request.files['photo'])
file_url = photos.url(filename)
return html + '<br><img src=' + file_url + '>' + '<br>' + "This image is " + pred
return html
if __name__ == '__main__':
df = pd.read_csv('./featuresOne.csv')
#transform DataFrame to numpy.array
DataSet=df.values
#make Format Feature:[[a1,b1,...,z1],.....[aN,bN,...,zN]]Label:[L1,L2,L3,...,LN]
Feature = DataSet[:,2:]
Label = DataSet[:,1:2]
Label = Label.flatten()
pred = load_svm_model.evaluate(Feature,Label)
app.run(port=9000, debug=True)
```
第一部分是上傳圖片的時候先執行擷取特徵裡面的函式把CSV做出來再執行load_svm_model。
第二部分把load_svm_model.py import進去,執行裡面的函式。