# Leetcode [No. 98] Validate Binary Search Tree (MEDIUM) 解題心得 ## 題目 https://leetcode.com/problems/validate-binary-search-tree/description/ ## 思路 [參考資料](https://hackmd.io/@Ji0m0/B1dUOaRjN/https%3A%2F%2Fhackmd.io%2F%40Ji0m0%2FBkgKmiIdO) + 這個解法主要是透過inorderTraversal的性質來解題 + 一個BST再經過inorderTraversal後,會是monotonic increasing的 + 所以先把它存起後再去做比較~ ```c++= class Solution { public: bool isValidBST(TreeNode* root) { // implement a inorder traversal first vector<int> res; inorderTraversal(root, res); for(int i = 1 ; i < res.size(); i++) { if(res[i] > res[i-1]) { continue; } else { return false; } } return true; } void inorderTraversal(TreeNode* node, vector<int>& res) { if(node->left) inorderTraversal(node->left, res); res.emplace_back(node->val); if(node->right) inorderTraversal(node->right, res); } }; ``` ### 解法分析 + time complexity: O(n) ### 執行結果 ![image](https://hackmd.io/_uploads/HJ2gmsVip.jpg) ## 改良: 這種tree-based的問題除了iterative approach外,一定也都有recursive的解法。 以BST來說,我們就主要是確保每一個node都符合BST的特性,也就是left < right. + 對左邊的node來說,最多不能超過現在的node. + 對右邊的node來說,最低不能低於現在的node. ```C++= class Solution { public: bool _isValidBST(TreeNode *node, TreeNode *max_node, TreeNode *min_node) { if (!node) return true; if (max_node && node->val >= max_node->val) return false; if (min_node && node->val <= min_node->val) return false; return _isValidBST(node->left, node, min_node) && _isValidBST(node->right, max_node, node); } bool isValidBST(TreeNode* root) { return _isValidBST(root, nullptr, nullptr); } }; ``` ### 解法分析 + time complexity: O(n) ### 執行結果 ![image](https://hackmd.io/_uploads/BJCcG04iT.jpg) --- ## 三訪 ```c++= /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: bool isValidBST(TreeNode* root) { return helper(root, 1001, -1001); } bool helper(TreeNode* node, int maxVal, int minVal) { if (!node) return true; if (node->val >= maxVal) return false; if (node->val <= minVal) return false; return helper(node->left, node->val, minVal) && helper(node->right, maxVal, node->val); } }; ```