<!-- {%hackmd @JunnerX/dark-mode %} --> # ${\displaystyle \lim_{x\to\frac{\pi}{4}^-} \frac{\sqrt{1-\sin2x}}{x-\frac\pi4} }$ $$\newcommand{\d}{\mathrm{d}} \newcommand{\alb}{\begin{align*}} \newcommand{\ale}{\end{align*}} \newcommand{\dis}{\displaystyle} \newcommand{\red}{\color{red}} \newcommand{\brown}{\color{brown}} \newcommand{\lrr}[1]{\left( #1 \right)} \newcommand{\lrs}[1]{\left[ #1 \right]} \newcommand{\overequal}[1]{\stackrel{ #1 }{=}} \newcommand{\lx}[1]{\lim_{x\to{ #1 }}} $$ $$\alb \lx{\frac\pi4^-} \frac{\sqrt{1-\sin2x}}{x-\frac\pi4} &= \lx{0^-}\frac{\sqrt{1-\sin(2x+\frac{\pi}{2})}}{x}\\ \ale $$ Note that: :::warning $$\alb &\cos x = \sin(x + \frac\pi2)\\ \implies& \cos2x = \sin(2x + \frac\pi2) \ale $$ $$\alb &\cos(\alpha+\beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta\\ \implies& \cos 2x = \cos^2x-\sin^2x = 1-2\sin^2x\\ \implies& \left| \sin x \right| = \sqrt{ \frac{1-\cos 2x}{2} } \\ \implies& \sqrt{ 1-\sin\!\lrr{2x + \frac\pi2} } = \sqrt{2} \left| \sin x \right|\\ \ale $$ ::: For $-\pi \leq x \leq 0$, $$\left| \sin x \right| =- \sin x $$ So we get $$\alb \lx{0^-}\frac{\sqrt{1-\sin(2x+\frac{\pi}{2})}}{x} &= \lx{0^-}\frac{-\sqrt{2}\sin x}{x}\\ &= -\sqrt{2} \ale $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up