{%hackmd 8nGPjMOiTy-0DWU2xy0q0Q %} # Multiple Linear Regression [Home Page](/_9v1g3C3TXmUfBbxkjnn0A) [toc] ## Formula | Name | Notation | Definition | |:------------------------------------- |:--------- |:-------------------------------------------------------------------------------------- | | Sum of square total | $SSTO$ | $\sum_{i = 1}^{n} (y_i - \ol y)^2$ | | Sum of square errors | $SSE$ | $\sum_{i = 1}^{n} (y_i - \hat y_i)^2$ | | Sum of square regression | $SSR$ | $\sum_{i = 1}^{n} (\hat y_i - \ol y)^2$ | | Mean of squared error | $MSE$ | $\dps \frac{SSE}{n − p}$ | | Mean of squared regression | $MSR$ | $\dps \frac{SSE}{p − 1}$ | | Coefficient of Determination | $R^2$ | $\dps 1 - \frac{SSE}{SSTO} = \frac{SSR}{SSTO}$ | | Adjusted Coefficient of Determination | $R_a^2$ | $\dps 1 - \frac{SSE / (n - p)}{SSTO / (n - 1)} = 1 - \frac{(n - 1) SSR}{(n - p) SSTO}$ | | F-Statistic | $F^*$ | $\dps \frac{MSR}{MSE}$ | | P-value | $P$-value | $P (F^* < F_{1, n - 2})$ | ## Multiple Linear Regression Given data $(X_{i1}, X_{i2}, \cdots, X_{ik}, Y_i)_{i = 1}^{n}$, let $p = k + 1$ $$ \ut Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} $$ and $$ \bs X = \begin{pmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1k} \\ 1 & X_{21} & X_{22} & \cdots & X_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{nk} \\ \end{pmatrix}. $$ $$ \ut \beta = (\bs X^T \bs X)^{-1} \bs X^T \ut Y. $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up