{%hackmd theme-dark %} # Machine Learning 2 ###### tags: `ML` `大學` ## Digit Recognizer * https://www.kaggle.com/c/digit-recognizer/ * 28x28 1-channel input * 10 categories output ### Model * Fully connected * Linear ReLU Stack x4 * Cross-entropy Loss * Stochastic Gradient Descend * Model Diagram ![](https://i.imgur.com/RyOYW7t.png) * Accuracy/Epoch ![](https://i.imgur.com/WaUm632.png) * Test Loss/Epoch ![](https://i.imgur.com/2y5iF0C.png) * Training Loss/Update ![](https://i.imgur.com/eyKPHQj.png) * 0.9979 Verify Accuracy * 0.9663 Test Accuracy * Ran with batch size 64 ### Remarks * Simple network * Visualized using TensorBoard * Tried 3x Linear ReLU stack * Not shown in graphs * Reached accuracy of 72% * Same network, same parameters, significant different outcomes ## Chinese MNIST * https://www.kaggle.com/gpreda/chinese-mnist * 64x64 1-channel input * 15 categories output ### Model * ConvNet * 3x Conv ReLU MaxPool * Fully connected * 3x Linear ReLU * Cross-entropy Loss * Adam * Model Diagram ![](https://i.imgur.com/L7LHTKL.png) * Accuracy/Epoch ![](https://i.imgur.com/ELwyB9J.png) * Test Loss/Epoch ![](https://i.imgur.com/j9WoCrv.png) * Training Loss/Update ![](https://i.imgur.com/n8zNhrj.png) * 0.9713 Test Accuracy * 12k Train 3k Test * Ran with batch size 32 ### Remarks * Visualized using TensorBoard * Tried SGD * Not shown in graphs * Accuracy consistently "stuck" at ~40% * Takes forever to run on CPU * 3 Epoch Train Time * CPU: ?mins * GTX1060: ~5mins * RTX2080Ti: <1mins