Math 182 Miniproject 6 Another $p$-test.md --- Math 182 Miniproject 6 Another $p$-test === **Overview:** In this project we develop a $p$-test to determine whether a certain type of integral converges or diverges. **Prerequisites:** Section 6.5 of _Active Calculus_ In class we learned the $p$-test for integrals of the flavor $$ \int_1^\infty\frac{1}{x^p}dx. $$ __The $p$-test:__ $\int_1^\infty\frac{1}{x^p}dx$ converges if and only if $p>1$. --- Your task is to identify conditions on $p$ that let us know when the integral $$ \int_2^\infty\frac{1}{x(\ln(x))^p}dx $$ converges. You may want to break your exploration into separate cases. Include all of your work below. $$\int_2^\infty\frac{1}{x(\ln(x))^p}dx=$$ $$Lim_{B->∞}=\int_2^B\frac{1}{x(\ln(x))^p}dx$$ $$P=1; Lim_{B->\infty}=(Ln(B))-(Ln(2))=\infty(Diverges)$$ $$u=ln(x);du=1dx/x$$ $$Lim_{B->∞}\int_2^B\frac{du}{(u)^p}dx=Lim_{B->∞}\int_{Ln(2)}^{Ln(B)}\frac{du}{(u)^p}dx$$ $$\frac{u^{1-p}}{1-p}|^{lnB}_{ln2}=\frac{1}{1-p}Lim_{B->\infty}(LnB^{1-p}-Ln2^{1-p})$$ $$Converges$$ $$iff$$ $$p>1$$ ___ To submit this assignment click on the __Publish__ button. Then copy the url of the final document and submit it in Canvas.