--- tags: Numerical method --- # Given method Definition $k$ is index $\Phi_{k} =\Phi(x_k)$ $\Delta =x_{k+1}-x_k$ Discrete Taylor $\Phi_{k\pm1} =\Phi_{k} \pm \Delta\Phi_k' +\frac{\Delta^2}{2!}\Phi_k'' \pm \frac{\Delta^3}{3!}\Phi_k'''+O(\Delta^4)$ The odd term will cancel out $\Phi_{k+1}+\Phi_{k-1} =2\Phi_{k} +\Delta^2\Phi_k'' +O(\Delta^4)$ Use Schrödinger equation replace $\Phi_{k}''$ $(\frac{-\hbar^2}{2\mu}\nabla^2+V)\Phi=E\Phi$ $\nabla^2\Phi=\Phi''$ $\Phi_k''=\frac{2\mu}{\hbar^2}(V_k-E)\Phi_k$ $\Phi_{k+1}+\Phi_{k-1} =2\Phi_{k} +\frac{2\mu\Delta^2}{\hbar^2}(V_k-E)\Phi_k +O(\Delta^4)$ Assume $O(\Delta^4)=0$ $\Phi_{k+1}+\Phi_{k-1} -(2+\frac{2\mu\Delta^2}{\hbar^2})V_k\Phi_k=-\frac{2\mu\Delta^2}{\hbar^2}E\Phi_k$ Change to matrix $H_k=-(2+\frac{2\mu\Delta^2}{\hbar^2})V_k$ $\lambda=-(\frac{2\mu\Delta^2}{\hbar^2})E$ $$ \left( \begin{array}{ccc} H_1&1&0&\cdots&0\\ 1&H_2&1&\cdots&0\\ 0&1&H_3&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\cdots&H_n \end{array} \right)\left( \begin{array}{ccc} \Phi_1\\ \Phi_2\\ \Phi_3\\ \vdots\\ \Phi_n\\ \end{array} \right)=\lambda \left( \begin{array}{ccc} 1&0&0&\cdots&0\\ 0&1&0&\cdots&0\\ 0&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\cdots&1 \end{array} \right)\left( \begin{array}{ccc} \Phi_1\\ \Phi_2\\ \Phi_3\\ \vdots\\ \Phi_n\\ \end{array} \right)$$ Because the matris is tridiagnoal, there are efficient algorithms for diagonalizing and get eigenvalue.
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up