--- tags: Theory --- # Born–Oppenheimer approximation $$\hat H \Psi(\vec{R})= E\Psi(\vec{R})$$ For multi-electrons and nucleus $$\hat H = \hat{V}_{ee} +\hat{V}_{eN} +\hat{V}_{NN} +\hat{T}_{e} +\hat{T}_{N}$$ $V$ for potential energy electron-electron interaction $$\hat V_{ee}(\vec{r}) = \sum_{i>j}\frac{1}{r_{ij}}$$ electron-nucleus interaction $$\hat V_{eN}(\vec{r},\vec{R}) = \sum_{i,A}\frac{1}{r_{iA}}$$ nucleus-nucleus interaction $$\hat V_{NN}(\vec{R}) = \sum_{A>B}\frac{1}{r_{AB}}$$ $T$ for kinetic energy electrons kinetic energy $$\hat T_{e}(\vec{R}) = \sum_{i}\nabla_{r_i}^2$$ nucleus kinetic energy $$\hat T_{N}(\vec{R}) = \sum_{A}\nabla_{R_A}^2$$ $\vec{r}=(\vec{r}_1,\vec{r}_2,\cdots)$ for electrons position set $\vec{R}=(\vec{R}_1,\vec{R}_2,\cdots)$ for nucleus position set Separate Hamiltonian operator into two parts $$\hat H = \hat H_e(\vec{r}) + \hat H_N(\vec{R})$$ $$\hat{H}_e(\vec{r};\vec{R})=\hat{H}_e(\vec{r}) = \hat{V}_{ee}(\vec{r}) + \hat{V}_{eN}(\vec{r};\vec{R})+\hat{T}_{e}(\vec{r})$$ $$\hat{H}_N(\vec{R})=\hat{T}_{N}(\vec{R})+\hat{V}_{NN}(\vec{R})$$ Assume nucleus don't move when we calculat the energy of electrons $$\Psi(\vec{r},\vec{R})=\Phi_e(\vec{r};\vec{R})\Phi_N(\vec{R})$$ Get the potential energy of the nucleus in the positions $$\hat H \Psi(\vec{r},\vec{R})= \hat H_e(\vec{r})\Phi_e(\vec{r};\vec{R})\Phi_N(\vec{R}) + \hat H_N(\vec{R})\Phi_e(\vec{r};\vec{R})\Phi_N(\vec{R})$$ $$E\Phi_N(\vec{R})=(V _e(\vec{R}) +\hat H_N(\vec{R})) \Phi_N(\vec{R})$$ $$E\Phi_N(\vec{R})=(V (\vec{R}) +\hat T_N(\vec{R})) \Phi_N(\vec{R})$$ Wiki Link : https://en.wikipedia.org/wiki/Born%E2%80%93Oppenheimer_approximation