# AI / ML / DL 教學講義
###### tags: `tutor` `AI` `ML` `DL`
本文所有內容與資料皆由本人蒐集與撰寫,轉載請註明出處。
本篇講義尚未完成,因為跟我上課的學生落跑了,有空再回來做。
## Overview

## AI(人工智慧)
- What is AI? What do you think of AI?
Artificial intelligence (AI) is **intelligence demonstrated by machines**, as opposed to intelligence of humans and other animals. Example tasks in which this is done include speech recognition, computer vision, translation between (natural) languages, as well as other mappings of inputs.
- Is that AI?

- Let's ask the great chatGPT...


- More...


- From 1956 to 2023

- [人工智慧歷史回顧](https://ithelp.ithome.com.tw/articles/10239971)
- [完整解析AI人工智慧:3大浪潮+3大技術+3大應用|大和有話說](https://dahetalk.com/2018/04/08/%E5%AE%8C%E6%95%B4%E8%A7%A3%E6%9E%90ai%E4%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7%EF%BC%9A3%E5%A4%A7%E6%B5%AA%E6%BD%AE%EF%BC%8B3%E5%A4%A7%E6%8A%80%E8%A1%93%EF%BC%8B3%E5%A4%A7%E6%87%89%E7%94%A8%EF%BD%9C/)
## ML(機器學習)
- [Scikit-Learn](https://scikit-learn.org/stable)
- [Scikit-Learn Examples](https://scikit-learn.org/stable/auto_examples/index.html)
- [ML 2022 Intro](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/introduction%20(v2).pdf)


### The big picture

### What is Data and how to deal with it?

### Supervised Learning(監督式學習)
#### Regression(迴歸) & Classification(分類)

簡單來說,Regression(迴歸)輸出是數值大小,Classification(分類)輸出是類別。
- Linear Regression / Logistic Regression


- [Example: Linear Regression](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py)
- [Example: Logistic Function](https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic.html#sphx-glr-auto-examples-linear-model-plot-logistic-py)
- [Example: Logistic Regression 3-class Classifier](https://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html#sphx-glr-auto-examples-linear-model-plot-iris-logistic-py)
- KNN
- [Example: Nearest Neighbors Classification](https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-neighbors-plot-classification-py)
- Decision Tree
- [Example: Decision Tree Regression](https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html#sphx-glr-auto-examples-tree-plot-tree-regression-py)
- [Example: Understanding the decision tree structure](https://scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html#sphx-glr-auto-examples-tree-plot-unveil-tree-structure-py)
- Random Forest
- [Overfitting & Underfitting](https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html#sphx-glr-auto-examples-model-selection-plot-underfitting-overfitting-py)


### Unsupervised Learning(非監督式學習)
#### Clustering(分群)
- Kmeans
- [Example: A demo of K-Means clustering on the handwritten digits data](https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html#sphx-glr-auto-examples-cluster-plot-kmeans-digits-py)
- DBSCAN
- GMM
- Hierarchical Clustering
#### Dimensionality Reduction(降維)
- PCA
- TSNE
### Reinforcement Learning(強化學習)
- [EasyRL](https://datawhalechina.github.io/easy-rl/#/chapter1/chapter1)
## DL(深度學習)
- [李宏毅 ML 筆記](https://datawhalechina.github.io/leedl-tutorial/#/chapter1/chapter1)
### What is NN?
### Gradient Descent
### Back Propagation
### DNN
### CNN
### RNN
### Appendix: Pytorch Tutorial
- [Pytorch Basic](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Pytorch%20Tutorial%201.pdf)
- [Pytorch Example](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Pytorch%20Tutorial%202.pdf)