# Moment Generating Function 待修正 $X \sim Uni(a,b)$ $$ \begin{eqnarray} M_X(t)&=&E(e^{Xt})\\ ~&=&\int_a^b\frac{e^{xt}}{b-a}dx\\ ~&=&\frac{e^{bt}-e^{at}}{t(b-a)} \end{eqnarray} $$ $$ \begin{eqnarray} E(X)&=&\frac{d}{dt}M_X(t)\big|_{t=0}\\ ~&=&\frac{d}{dt}\frac{e^{bt}-e^{at}}{t(b-a)}\big|_{t=0}\\ ~&=&\frac{(be^{bt}-ae^{at})t(b-a)-(e^{bt}-e^{at})(b-a)}{[t(b-a)]^2}\big|_{t=0}\\ ~&=&\frac{e^{xt}}{b-a} \end{eqnarray} $$ $$ \begin{eqnarray} E(X^2)&=&\frac{d^2}{dt^2}M_X(t)\big|_{t=0}\\ ~&=&\frac{d^2}{dt^2}q+pe^t\big|_{t=0}\\ ~&=&pe^t\big|_{t=0}\\ ~&=&p \end{eqnarray} $$ $$ \begin{eqnarray} Var(X)&=&E(X^2)-(E(X))^2\\ ~&=&p-p^2\\ ~&=&pq \end{eqnarray} $$ --- $X \sim Bernoulli(p)$ $$ \begin{eqnarray} M_X(t)&=&E(e^{Xt})\\ ~&=&qe^{0t}+pe^{1t}\\ ~&=&q+pe^t \end{eqnarray} $$ $$ \begin{eqnarray} E(X)&=&\frac{d}{dt}M_X(t)\big|_{t=0}\\ ~&=&\frac{d}{dt}q+pe^t\big|_{t=0}\\ ~&=&pe^t\big|_{t=0}\\ ~&=&p \end{eqnarray} $$ $$ \begin{eqnarray} E(X^2)&=&\frac{d^2}{dt^2}M_X(t)\big|_{t=0}\\ ~&=&\frac{d^2}{dt^2}q+pe^t\big|_{t=0}\\ ~&=&pe^t\big|_{t=0}\\ ~&=&p \end{eqnarray} $$ $$ \begin{eqnarray} Var(X)&=&E(X^2)-(E(X))^2\\ ~&=&p-p^2\\ ~&=&pq \end{eqnarray} $$ --- $X \sim Bino(n, p)$ $$ \begin{eqnarray} M_X(t)&=&E(e^{Xt})\\ ~&=&\sum_{x=0}^{n}e^{xt}{n\choose x}p^xq^{n-x}\\ ~&=&\sum_{x=0}^{n}{n\choose x}(e^tp)^xq^{n-x}\\ ~&=&(e^tp+q)^n\\ \end{eqnarray} $$ $$ \begin{eqnarray} E(X)&=&\frac{d}{dt}M_X(t)\big|_{t=0}\\ ~&=&\frac{d}{dt}(e^tp+q)^n\big|_{t=0}\\ ~&=&n(e^tp+q)^{n-1}e^tp\big|_{t=0}\\ ~&=&np \end{eqnarray} $$ $$ \begin{eqnarray} E(X^2)&=&\frac{d^2}{dt^2}M_X(t)\big|_{t=0}\\ ~&=&\frac{d^2}{dt^2}(e^tp+q)^n\big|_{t=0}\\ ~&=&npe^t(e^tp+q)^{n-1}+n(n-1)e^{2t}p^2(e^tp+q)^{n-2}\big|_{t=0}\\ ~&=&n^2p^2-np^2+np \end{eqnarray} $$ $$ \begin{eqnarray} Var(X)&=&E(X^2)-(E(X))^2\\ ~&=&n^2p^2-np^2+np-n^2p^2\\ ~&=&npq \end{eqnarray} $$ --- $X \sim Poi(\lambda)$ $$ \begin{eqnarray} M_X(t)&=&E(e^{Xt})\\ ~&=&\sum_{x=0}^{\infty}e^{xt}\frac{e^{-\lambda}\lambda^x}{x!}\\ ~&=&\sum_{x=0}^{\infty}\frac{e^{-\lambda}(e^t\lambda)^x}{x!}\\ ~&=&e^{-\lambda}e^{e^t\lambda}\sum_{x=0}^{\infty}\frac{e^{-e^t\lambda}(e^t\lambda)^x}{x!}\\ ~&=&e^{-\lambda}e^{e^t\lambda}\\ ~&=&e^{\lambda (e^t-1)} \end{eqnarray} $$ $$ \begin{eqnarray} E(X)&=&\frac{d}{dt}M_X(t)\big|_{t=0}\\ ~&=&\frac{d}{dt}e^{\lambda^(e^t-1)}\big|_{t=0}\\ ~&=&\lambda e^{\lambda(e^t-1)}e^t\big|_{t=0}\\ ~&=&\lambda \end{eqnarray} $$ $$ \begin{eqnarray} E(X^2)&=&\frac{d^2}{dt^2}M_X(t)\big|_{t=0}\\ ~&=&\frac{d^2}{dt^2}e^{\lambda^(e^t-1)}\big|_{t=0}\\ ~&=&\lambda e^t(1+\lambda e^t)e^{\lambda(e^t-1)}\big|_{t=0}\\ ~&=&\lambda(1+\lambda)\\ ~&=&\lambda^2+\lambda \end{eqnarray} $$ $$ \begin{eqnarray} Var(X)&=&E(X^2)-(E(X))^2\\ ~&=&\lambda^2+\lambda-\lambda^2\\ ~&=&\lambda \end{eqnarray} $$ --- $X\sim Hyper()$ --- $X \sim Exp(\lambda)$ $$ \begin{eqnarray} M_X(t)&=&E(e^{Xt})\\ ~&=&\int_{0}^{\infty}e^{xt}\lambda e^{-\lambda x}dx\\ ~&=&\int_{0}^{\infty}\lambda e^{-x(\lambda-t)}dx\\ ~&=&\frac{\lambda}{\lambda-t}\int_{0}^{\infty}(\lambda-t)e^{x(\lambda-t)}dx\\ ~&=&\frac{\lambda}{\lambda-t} \end{eqnarray} $$ $$ \begin{eqnarray} E(X)&=&\frac{d}{dt}M_X(t)\big|_{t=0}\\ ~&=&\frac{d}{dt}\frac{\lambda}{\lambda-t}\big|_{t=0}\\ ~&=&\frac{\lambda}{(\lambda-t)^2}\big|_{t=0}\\ ~&=&\frac{1}{\lambda} \end{eqnarray} $$ $$ \begin{eqnarray} E(X^2)&=&\frac{d^2}{dt^2}M_X(t)\big|_{t=0}\\ ~&=&\frac{d^2}{dt^2}\frac{\lambda}{\lambda-t}\big|_{t=0}\\ ~&=&\frac{2\lambda(\lambda-t)}{(\lambda-t)^4}\big|_{t=0}\\ ~&=&\frac{2}{\lambda^2} \end{eqnarray} $$ $$ \begin{eqnarray} Var(X)&=&E(X^2)-(E(X))^2\\ ~&=&\frac{2}{\lambda^2}-\frac{1}{\lambda^2}\\ ~&=&\frac{1}{\lambda^2} \end{eqnarray} $$ --- $X \sim Geo(p)$ $$ \begin{eqnarray} M_X(t)&=&E(e^{xt})\\ ~&=&\sum_{x=1}^{\infty}e^{xt}q^{x-1}p\\ ~&=&\frac{p}{q}\sum_{x=1}^{\infty}(qe^t)^x\text{ , only when } e^tq\lt1\\ ~&=&\frac{p}{q}\frac{qe^t}{1-qe^t}\\ ~&=&\frac{pe^t}{1-qe^t} \end{eqnarray} $$ $$ \begin{eqnarray} E(X)&=&\frac{d}{dt}M_X(t)\big|_{t=0}\\ ~&=&\frac{d}{dt}\frac{pe^t}{1-qe^t}\big|_{t=0}\\ ~&=&\frac{pe^t}{(1-qe^t)^2}\big|_{t=0}\\ ~&=&\frac{1}{p} \end{eqnarray} $$ $$ \begin{eqnarray} E(X^2)&=&\frac{d^2}{dt^2}M_X(t)\big|_{t=0}\\ ~&=&\frac{d^2}{dt^2}\frac{pe^t}{1-qe^t}\big|_{t=0}\\ ~&=&\frac{pe^t(1-q^2e^{2t})}{(1-qe^t)^4}\big|_{t=0}\\ ~&=&\frac{p(1-q^2)}{(1-q)^4}\\ ~&=&\frac{p^2(1+q)}{p^4}\\ ~&=&\frac{1+q}{p^2} \end{eqnarray} $$ $$ \begin{eqnarray} Var(X)&=&E(X^2)-(E(X))^2\\ ~&=&\frac{1+q}{p^2}-\frac{1}{p^2}\\ ~&=&\frac{q}{p^2} \end{eqnarray} $$ --- $X \sim Normal(\mu, \sigma)$ $$ \begin{eqnarray} M_X(t)&=&E(e^{Xt})\\ ~&=&\int_{-\infty}^{\infty}e^{xt}\frac{e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}}{\sqrt{2\pi}\sigma}dx\\ ~&=&\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{\infty}e^{xt-\frac{(x-\mu)^2}{2\sigma^2}}dx\\ ~&=&\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{\infty}e^{\frac{-(x^2-2\mu x-2\sigma^2xt+\mu^2)}{2\sigma^2}}dx\\ ~&=&\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{\infty}e^{\frac{-(x^2-2x(\mu+\sigma^2t)+\mu^2)}{2\sigma^2}}dx\\ ~&=&\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{\infty}e^{\frac{-((x-(\mu+\sigma^2t))^2+\mu^2-(\mu+\sigma^2t)^2)}{2\sigma^2}}dx\text{, by completing the square}\\ ~&=&\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{\infty}e^{\frac{-(x-(\mu+\sigma^2t))^2-\sigma^4t^2-2\mu\sigma^2t}{2\sigma^2}}dx\\ ~&=&\frac{e^{\frac{\sigma^2t^2+2\mu t}{2}}}{\sqrt{2\pi}\sigma}\int_{-\infty}^{\infty}e^{\frac{-(x-(\mu+\sigma^2t))^2}{2\sigma^2}}dx\\ ~&=&e^{\frac{\sigma^2t^2}{2}+\mu t}\int_{-\infty}^{\infty}\underbrace{\frac{e^{\frac{-(x-(\mu+\sigma^2t))^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}}_{\text{PDF of } Normal(\mu+\sigma^2t,\sigma)}dx\\ ~&=&e^{\frac{\sigma^2t^2}{2}+\mu t}\\ \end{eqnarray} $$ $$ \begin{eqnarray} E(X)&=&\frac{d}{dt}M_X(t)\big|_{t=0}\\ ~&=&e^{\frac{\sigma^2t^2}{2}+\mu t}\big|_{t=0}\\ ~&=&(\sigma^2t+\mu)e^{\frac{\sigma^2t^2}{2}+\mu t}\big|_{t=0}\\ ~&=&\mu \end{eqnarray} $$ $$ \begin{eqnarray} E(X^2)&=&\frac{d^2}{dt^2}M_X(t)\big|_{t=0}\\ ~&=&\frac{d^2}{dt^2}e^{\frac{\sigma^2t^2}{2}+\mu t}\big|_{t=0}\\ ~&=&(\sigma^2t+\mu)^2e^{\frac{\sigma^2t^2}{2}+\mu t}+\sigma^2e^{\frac{\sigma^2t^2}{2}}\big|_{t=0}\\ ~&=&\mu^2+\sigma^2 \end{eqnarray} $$ $$ \begin{eqnarray} Var(X)&=&E(X^2)-(E(X))^2\\ ~&=&\mu^2+\sigma^2-\mu^2\\ ~&=&\sigma^2 \end{eqnarray} $$ --- $X\sim Gamma(\alpha, \beta)$ $$ \begin{eqnarray} M_X(t)&=&E(e^{Xt})\\ ~&=&\int_{0}^{\infty}e^{xt}\frac{1}{\Gamma(\alpha)\beta^\alpha}x^{\alpha-1}e^{-\frac{x}{\beta}}dx\\ ~&=&\int_{0}^{\infty}\frac{1}{\Gamma(\alpha)\beta^\alpha}x^{\alpha-1}e^{-x\frac{1-\beta t}{\beta}}dx\\ ~&=&\frac{1}{(1-\beta t)^\alpha}\int_{0}^{\infty}\frac{1}{\Gamma(\alpha)(\frac{\beta}{1-\beta t})^\alpha}x^{\alpha-1}e^{-x\frac{1-\beta t}{\beta}}dx\\ ~&=&(1-\beta t)^{-\alpha} \end{eqnarray} $$ $$ \begin{eqnarray} E(X)&=&\frac{d}{dt}M_X(t)\big|_{t=0}\\ ~&=&\frac{d}{dt}(1-\beta t)^{-a}\big|_{t=0}\\ ~&=&\alpha\beta(1-\beta t)^{-a-1}\big|_{t=0}\\ ~&=&\alpha\beta \end{eqnarray} $$ $$ \begin{eqnarray} E(X^2)&=&\frac{d^2}{dt^2}M_X(t)\big|_{t=0}\\ ~&=&\frac{d^2}{dt^2}(1-\beta t)^{-a}\big|_{t=0}\\ ~&=&\alpha(\alpha+1)\beta^2(1-\beta t)^{-a-2}\big|_{t=0}\\ ~&=&\alpha^2\beta^2+\alpha\beta^2 \end{eqnarray} $$ $$ \begin{eqnarray} Var(X)&=&E(X^2)-(E(X))^2\\ ~&=&\alpha^2\beta^2+\alpha\beta^2-\alpha^2\beta^2\\ ~&=&\alpha\beta^2 \end{eqnarray} $$ --- $X\sim \chi^2(r)$ $$ \begin{eqnarray} M_X(t)&=&E(e^{Xt})\\ ~&=&\int_{0}^{\infty}e^{xt}\frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}}x^{\frac{r}{2}-1}e^{-x/2}dx\\ ~&=&\int_{0}^{\infty}\frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}}x^{\frac{r}{2}-1}e^{-\frac{x(1-2t)}{2}}dx\\ ~&=&\frac{1}{(1-2 t)^\frac{r}{2}}\int_{0}^{\infty}\underbrace{\frac{1}{\Gamma(\frac{r}{2})(\frac{2}{1-2t})^\frac{r}{2}}x^{\frac{r}{2}-1}e^{-x\frac{1-2 t}{2}}}_{\text{PDF of }Gamma(\frac{r}{2},\frac{1-2t}{2})}dx\\ ~&=&(1-2 t)^{-\frac{r}{2}} \end{eqnarray} $$ $$ \begin{eqnarray} E(X)&=&\frac{d}{dt}M_X(t)\big|_{t=0}\\ ~&=&\frac{d}{dt}(1-2 t)^{-\frac{r}{2}}\big|_{t=0}\\ ~&=&-2\frac{-r}{2}(1-2 t)^{-\frac{r}{2}-1}\big|_{t=0}\\ ~&=&r(1-2 t)^{-\frac{r}{2}-1}\big|_{t=0}\\ ~&=&r \end{eqnarray} $$ $$ \begin{eqnarray} E(X^2)&=&\frac{d^2}{dt^2}M_X(t)\big|_{t=0}\\ ~&=&\frac{d^2}{dt^2}(1-2 t)^{-\frac{r}{2}}\big|_{t=0}\\ ~&=&-2r(-\frac{r}{2}-1)(1-2 t)^{-\frac{r}{2}-1}\big|_{t=0}\\ ~&=&(r^2+2r)(1-2 t)^{-\frac{r}{2}-1}\big|_{t=0}\\ ~&=&r^2+2r \end{eqnarray} $$ $$ \begin{eqnarray} Var(X)&=&E(X^2)-(E(X))^2\\ ~&=&r^2 + 2r -r^2\\ ~&=&2r \end{eqnarray} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up