# Deep Learning in JS - ashi ###### tags: `jsdc2019` {%hackmd @JSDC-tw/2019-announcement %} Train in the sky and run in the browser ## TensorFlow TF.py | [TF.js](https://www.tensorflow.org/js) ---|---- CPU, GPU, TPU | CPU(Node), GPU(WebGL) Giant ML ecosystem | not yet --- ## What are models? > learning rate > loss landscape -> visualizing > transfer learning > Stochastic Gradient Descent (比喻:隨機畫線→趨近一條蛇?) > Relu Activation Function > mobilenet:pretrained model > 用mobilenet的output當作ensemble 的input,train一個smaller network > Loss function: categoricalCrossentropy →計算[1, 0, 0] 和 [0.4, 0.5, 0.1] 的差異 https://github.com/tensorflow/tfjs-examples/tree/master/webcam-transfer-learning example model: https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v1_0.25_224/model.json convolutions https://github.com/tensorflow/tfjs-examples/tree/master/visualize-convnet --- - Tensorflow - JS - Python - Modeling - [example model](https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v1_0.25_224/model.json) - [Loss: 損失函數 (How badly we did)](https://medium.com/@chih.sheng.huang821/%E6%A9%9F%E5%99%A8-%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-%E5%9F%BA%E7%A4%8E%E4%BB%8B%E7%B4%B9-%E6%90%8D%E5%A4%B1%E5%87%BD%E6%95%B8-loss-function-2dcac5ebb6cb) - Mean Square Error - [Loss Landscape](https://github.com/tomgoldstein/loss-landscape) - mobilenet:pretrained model > 用mobilenet的output當作ensemble 的input,train一個smaller network - [Gradient Decent](https://www.wikiwand.com/zh-tw/%E6%A2%AF%E5%BA%A6%E4%B8%8B%E9%99%8D%E6%B3%95) - [stochastic_gradient_descent](https://www.wikiwand.com/en/Stochastic_gradient_descent) - [ReLu 線性整流函數](https://www.wikiwand.com/zh-tw/线性整流函数) - [Transfer Training](https://www.wikiwand.com/zh-tw/%E8%BF%81%E7%A7%BB%E5%AD%A6%E4%B9%A0) - [tfjs-examples/webcam-transfer-learning](https://github.com/tensorflow/tfjs-examples/tree/master/webcam-transfer-learning) - [Adam Optimizer](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam) - [Cross Entropy](https://medium.com/@chih.sheng.huang821/%E6%A9%9F%E5%99%A8-%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-%E5%9F%BA%E7%A4%8E%E4%BB%8B%E7%B4%B9-%E6%90%8D%E5%A4%B1%E5%87%BD%E6%95%B8-loss-function-2dcac5ebb6cb) - categoricalCrossentropy → 計算[1, 0, 0] 和 [0.4, 0.5, 0.1] 的差異 - [Convolutions](https://www.wikiwand.com/zh-tw/%E5%8D%B7%E7%A7%AF) 卷積 - [tfjs-examples/visualize-convnet](https://github.com/tensorflow/tfjs-examples/tree/master/visualize-convnet) - 結語 - ML 可以被用來計算、產生模擬人講話的影片,未來的接收到的訊息是否可以被信任?