# 數學 ## 95 ![](https://i.imgur.com/JHjEpjO.png) ![](https://i.imgur.com/VDlKDfX.png) ![](https://i.imgur.com/rdUihFV.png) ![](https://i.imgur.com/1CQvqx6.png) ![](https://i.imgur.com/ELLtNrm.png) ![](https://i.imgur.com/IVFBh0P.png) ![](https://i.imgur.com/J35Q0K8.png) ![](https://i.imgur.com/LfKr9iq.png) ![](https://i.imgur.com/dWHEoR8.png) ![](https://i.imgur.com/5n5Sm5S.png) ![](https://i.imgur.com/W0wrJSw.png) ![](https://i.imgur.com/xB3owfn.png) ![](https://i.imgur.com/buAUVeI.png) ![](https://i.imgur.com/QFgRJ3n.png) > $trace(A^{T}A) = trace(AA^{T}) = \sum_{j=1} (A^{T}A)_{jj} = \sum_{j=1} \sum_{i=1}(A)_{ij} * (A)_{ij} = \sum_{j=1} \sum_{i=1}(A)_{ij}^2 = \sum_{i=1} \sigma_i^2$ ($A^{T}A$的奇異值平方和) > 要找和奇異值的關係用SVD分解:$trace(A^{T}A) = trace(\sum^T \sum) = \sum_{i=1} \sigma_i^2$ > 要找和特徵值的關係用Schur分解:$trace(A^{T}A) = trace(UT^*U^*UTU^*) = trace(T^*T) = \sum_{j=1} \sum_{i=1}(T_{ij})^2 = \sum_{i=1}(T_{ii})^2 + \sum_{i=1, j>i}(T_{ij})^2$ > $= \sum_{i=1} \lambda_i^2 + \sum_{i=1, j>i}(T_{ij})^2 >= \sum_{i=1} \lambda_i^2$ > 等號成立於A為正規矩陣的時候 > https://ccjou.wordpress.com/2010/05/10/矩陣模/ > https://ccjou.wordpress.com/2013/10/30/矩陣跡數與特徵值和奇異值的關係/ ## 96 ![](https://i.imgur.com/2QivlbK.png) > 要硬爆也是可以只是比較慢 > 重點是變數變換:$I = (I+A)(I+A)^{-1}$ ![](https://i.imgur.com/kSVuui6.png) > generating function method > 解題步驟: > 令$A(x) = a_0 + a_1*x^1 + a_2*x^2 + ...$ > 找出最低次方為$A_{n}$的遞迴式: $A_{n+2} = 3A_{n+1} + 2A_{n}$ > 乘上最高次方:$x^{n+2}$ > 解$A(x)$ ![](https://i.imgur.com/tcIHvHS.png) ![](https://i.imgur.com/g7W9RTT.png) ![](https://i.imgur.com/epGHCtf.png) ## 97 ![](https://i.imgur.com/V4oJfZx.png) > Householder 除了鏡射之外,**長度伸縮**的概念(看特徵值) > ![](https://i.imgur.com/H9iUkIS.png) ![](https://i.imgur.com/m3UWqNG.png) > $(c, d) = (-1, n-1)$ > if $v^{T}u = -1$, then eigenvalue of $v^{T}u$ is $-1, 0, 0, 0,...$(n-1個 0) > $u^{T}v$ 的 eigenvalue 為:$ is $-1, 0, 0, 0,...$(n-1個 0) > $I + u^{T}v$ 的 eigenvalue 為:$ is $0, 1, 1, 1,...$(n-1個 1) > $Nullity(I + u^{T}v) = dim(ker(I + u^{T}v)) = dim(ker((I + u^{T}v) - 0*I)) = 1$ > $rank(I + u^{T}v) = n - 1$ > 也可以由 $N(I + u^{T}v) = span(u)$ 得出$rank(I + u^{T}v) = n - 1$ > 因為$(I + u^{T}v)*x = 0, x = -(v^{T}x)*u, x \in span(u)$ > ![](https://i.imgur.com/Jjkb093.png) > https://ccjou.wordpress.com/2010/02/02/特殊矩陣-十:基本矩陣/ ![](https://i.imgur.com/kakmhnB.png) > ![](https://i.imgur.com/wd90q0A.png) > https://ccjou.wordpress.com/2012/06/27/伴隨矩陣/ > 計算伴隨矩陣是用餘因子,當原本矩陣有兩列相同,做這列的餘因子會是ㄧ樣的,而其他 列的餘因子都會是0(因為有兩列相同),所以做出來的adj(A)會是rank1。 > 當超過兩列相同,餘因子就會都是0,rank(adj(A)) = 0 > 證明: > 等式:$A * adj(A) = det(A) * I$ > 若 $A$可逆,$adj(A) = A^{-1} * det(A) * I$,$adj(A^{-1}) = (A^{-1})^{-1} * det(A^{-1}) * I = A * 1/det(A)$ > 若 $A$不可逆:$A * adj(A) = 0$ 代表 $adj(A)$的行空間屬於 $A$的零空間 > 故 $rank(adj(A)) = dim(C(adj(A))) <= dim(N(A))$ > 由定義計算,分為2 case: > 1. $rank(A) = n - 1 -> rank(adj(A)) = 1$ > 2. $rank(A) < n - 1 -> rank(adj(A)) = 0$ ![](https://i.imgur.com/cqxrYPc.png) > ![](https://i.imgur.com/xzRN4Y5.png) >https://ccjou.wordpress.com/2009/10/21/%e4%ba%8c%e6%ac%a1%e5%9e%8b%e8%88%87%e6%ad%a3%e5%ae%9a%e7%9f%a9%e9%99%a3/ https://ccjou.wordpress.com/2010/03/16/hermitian-%E7%9F%A9%E9%99%A3%E7%89%B9%E5%BE%B5%E5%80%BC%E7%9A%84%E8%AE%8A%E5%8C%96%E7%95%8C%E5%AE%9A/ ![](https://i.imgur.com/1fOfgmH.png) > ![](https://i.imgur.com/6Fb2XQd.png) > ![](https://i.imgur.com/W29Jf2X.png) > https://ccjou.wordpress.com/2013/06/14/%e5%bb%a3%e7%be%a9%e7%89%b9%e5%be%b5%e5%80%bc%e5%95%8f%e9%a1%8c/ * 9, 10題的key idea都是變數變換,使得我們最後只需要解一個Rayleigh 商即可 ![](https://i.imgur.com/rKXksTA.png) > Boolean algebra is a lattice, which is **bounded**, **distributed**, **complemented**. > 有交換律! > --- > ![](https://i.imgur.com/uGNZmbB.png) > --- > ![](https://i.imgur.com/bHnUihb.png) ![](https://i.imgur.com/PbVsP2j.png) > 先證 單位元素,再證反元素,最後是封閉性 > 結合、交換是遺傳 > --- > ![](https://i.imgur.com/w9B50B5.png) > ![](https://i.imgur.com/H66o85R.png) > --- > ![](https://i.imgur.com/Hexuo9S.png) > ![](https://i.imgur.com/YTP4VAo.png) ![](https://i.imgur.com/fjz1jDB.png) >![](https://i.imgur.com/oXqp3L7.png) ![](https://i.imgur.com/VUuy1TT.png) >![](https://i.imgur.com/uFVZwfX.png) ## 98 * 旋轉矩陣 > https://ccjou.wordpress.com/2014/04/29/三維空間的旋轉矩陣/ > https://ccjou.wordpress.com/2015/08/19/高階旋轉矩陣/ > https://ccjou.wordpress.com/2015/08/12/旋轉與鏡射/ ![](https://i.imgur.com/vlGPxmz.png) > ![](https://i.imgur.com/820YNV8.png) ![](https://i.imgur.com/NkgoYOW.png) > https://ccjou.wordpress.com/2009/10/23/特殊矩陣七:循環矩陣/ > ![](https://i.imgur.com/XIXYKDf.png) > ![](https://i.imgur.com/veTTcwb.png) ![](https://i.imgur.com/MaOEk6h.png) ![](https://i.imgur.com/s3S78et.png) > CDE > ![](https://i.imgur.com/crIo8S3.png) ![](https://i.imgur.com/x0ru37z.png) > A,B: 環--> +:封結單反交,X: 封結,X 對 + 有分配律 > C選項,環的定義,要求 x 對 + 要有分配律! > D選項,holds only for boolean algebra > E選項,這是一個定理 > ![](https://i.imgur.com/6xP3hHi.png) ![](https://i.imgur.com/y5au5mo.png) > ![](https://i.imgur.com/plAXPqD.png) > D選項: > ![](https://i.imgur.com/WWv67MO.png) > 注意是Cn+1,C0 = 1 > ![](https://i.imgur.com/dHrDIMm.png) > E選項:非線性遞迴(混沌)並非都有解 ![](https://i.imgur.com/Liq6leD.png) > 如果A選項是正確的,那麼兩圖是否同構的問題即有充分條件,不再是NP問題了 > ![](https://i.imgur.com/jCJDieq.png) > ![](https://i.imgur.com/eIeEXXg.png) > E選項: > ![](https://i.imgur.com/Gz4hc8h.png) > ![](https://i.imgur.com/M8WIaeC.png) ## 99 * $rank(A^TA) = rank(A)$ > Gramian 矩陣: https://ccjou.wordpress.com/2011/03/07/特殊矩陣-14:gramian-矩陣/ ![](https://i.imgur.com/3gCdKWr.png) > HouseHolder --> **純量** > ![](https://i.imgur.com/FzKo41Z.png) ![](https://i.imgur.com/MlyWaj2.png) > 可用暴力,不過 > ![](https://i.imgur.com/aOweaDB.png) > https://ccjou.wordpress.com/2009/08/26/cayley-hamilton-定理/ ![](https://i.imgur.com/Ha6YsnE.png) > https://ccjou.wordpress.com/2011/01/19/利用循環子空間計算特徵多項式/ > https://ccjou.wordpress.com/2012/12/05/限定算子的特徵值與特徵向量-上/ > https://ccjou.wordpress.com/2012/12/07/不使用行列式的特徵值和特徵向量算法-上/ > https://ccjou.wordpress.com/2012/12/26/最小多項式的計算方法/ > ![](https://i.imgur.com/IkWSbXi.png) > ![](https://i.imgur.com/kzMXtpd.png) > ![](https://i.imgur.com/58zaetq.png) > 參考觀念: > ![](https://i.imgur.com/RnFfFQg.png) ![](https://i.imgur.com/hYX7BQF.png) > 三對角矩陣特徵值公式:https://ccjou.files.wordpress.com/2010/02/powsol-feb-15-10.pdf > 此例:$b = 3, a = 2, c = 2$ > $\lambda_i = b + 2a \sqrt{c/a} * cos(i\pi/(n+1))$ > $= 3 + 2*2*cos(i\pi/(5+1)), i = 1,2,3,4,5$ > 在 i = 1時$cos(\pi/(5+1))= \sqrt3 / 2$有最大值 = $3 + 2\sqrt3$ > 也可以解遞迴 > 遞迴由小到大或是由大到小都可以,重點是式子要寫清楚,不要計算錯誤 > ![](https://i.imgur.com/0ERVZJ1.png) > ![](https://i.imgur.com/IySOo5Z.png) > ![](https://i.imgur.com/1xkfBV4.png) > ![](https://i.imgur.com/Gnavcmq.png) > ![](https://i.imgur.com/I04kIph.png) ![](https://i.imgur.com/pire1Pm.png) > ![](https://i.imgur.com/9on7TmU.png) > ![](https://i.imgur.com/cU0c6ka.png) > E選項: > ![](https://i.imgur.com/cuT0q89.png) ![](https://i.imgur.com/PEO3j6t.png) > D選項: > 指數生成函數 $e^x = \sum^{\infty}_{i=0}x^{i}/i!$ > $e^{-x} = \sum^{\infty}_{i=0}(-x)^{i}/i!$ > $(e^x + e^{-x}) / 2= \sum^{\infty}_{i=0}(x)^{i} + (-x)^{i})/i! = 1 + x^2/2! + x^4/4! ...$ > $(e^x - e^{-x}) / 2= \sum^{\infty}_{i=0}(x)^{i} - (-x)^{i})/i! = 1 + x^3/3! + x^5/5! ...$ >![](https://i.imgur.com/olHcKJ7.png) >![](https://i.imgur.com/2HBiIDR.png) ![](https://i.imgur.com/Vg0HlSO.png) > B選項:BFS後collapse parent connection, 形成 connected component > ![](https://i.imgur.com/FvYWqm8.png) ![](https://i.imgur.com/eptR7tJ.png) ![](https://i.imgur.com/7Jpx62k.png) ![](https://i.imgur.com/opSalfk.png) ![](https://i.imgur.com/jsBVs4E.png) ![](https://i.imgur.com/MU1dMyY.png) ![](https://i.imgur.com/tVw4STK.png) ![](https://i.imgur.com/9sbPhMG.png) --- ![](https://i.imgur.com/C1V7yV9.png) ![](https://i.imgur.com/PF8Wugi.png) ![](https://i.imgur.com/JOXxDkW.png) ## 100 ![](https://i.imgur.com/oUiWyGy.png) > 除了硬幹,也可以用下式求解 > $trace(A^2) = \sum\lambda^2$ > https://ccjou.wordpress.com/2013/10/30/矩陣跡數與特徵值和奇異值的關係/ ![](https://i.imgur.com/1cUZf5b.png) > key: rank1 matrix > https://ccjou.wordpress.com/2010/02/02/特殊矩陣-十:基本矩陣/ > https://ccjou.wordpress.com/2009/09/14/特殊矩陣-四:householder-矩陣/ > https://ccjou.wordpress.com/2009/03/14/ab-和-ba-有何關係/ > ![](https://i.imgur.com/toLgQ68.png) ![](https://i.imgur.com/wpKeBrw.png) >![](https://i.imgur.com/bYQgP61.png) >![](https://i.imgur.com/BEgNvrt.png) ![](https://i.imgur.com/Ou1MIbi.png) >![](https://i.imgur.com/BHQI9rY.png) >![](https://i.imgur.com/IelcHlI.png) ![](https://i.imgur.com/0ToEDFx.png) > ![](https://i.imgur.com/2oU0fZ6.png) ## 101 ![](https://i.imgur.com/0X3UT0v.png) > 觀察,題目給$A$的特徵方程式,要求$A^{2}$的特徵方程式,決定利用特徵多項式的根與係數關係 > 設$A$特徵值:$a, b, c$ > 得 $a + b + c = 1, ab + bc + ca = 3, abc = 2$ > 欲求$a^{2} + b^{2} + c^{2}, a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}, a^{2}b^{2}c^{2}$ > $(a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2(ab + bc + ca) = 1$ > --> $a^{2} + b^{2} + c^{2} = -5$ > --> $a^{2}b^{2}c^{2} = 2^2 = 4$ > 令$a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2} = Y$ > 可建構出 $det(xI - A^2) = x^3 + 5x^2 + Yx - 4$ > $x$代 $1$可得$det(I - A^2) = det(I + A) * det(I - A) = ((-1)^3 * -7 )* 1 = 7 = 2 + Y$ > $Y = 5$ > $det(xI - A^2) = x^3 + 5x^2 + 5x - 4$ > 這題要注意係數正負的關係,注意首項的係數是正(正負正負正負...)or負(負正負正負正...) > https://ccjou.wordpress.com/2010/01/12/特徵多項式蘊藏的訊息/ > ![](https://i.imgur.com/dLCppbt.png) > ![](https://i.imgur.com/RvOo6es.png) ![](https://i.imgur.com/046WxNC.png) > 可用不變子空間求解特徵根(和台大99年第九題一樣),也像下方詳解那樣用行列式去算。 > 行列式求解的關鍵:需要 k 個特徵根乘積和,就在主對角線上任選k個element,刪掉其所在的行與列,求剩下的行列式值,最後sum起來,即為所求。 >![](https://i.imgur.com/dEGenHs.png) >![](https://i.imgur.com/OxxTQdZ.png) ![](https://i.imgur.com/uwOQb3N.png) > https://ccjou.wordpress.com/2010/02/22/特殊矩陣-11:三對角矩陣/ > 三對角矩陣,特徵值公式:https://ccjou.files.wordpress.com/2010/02/powsol-feb-15-10.pdf > ![](https://i.imgur.com/Izf9a8p.png) > ![](https://i.imgur.com/NANhEsi.jpg) > ![](https://i.imgur.com/DctUW00.jpg) > ![](https://i.imgur.com/NmzvoQ3.jpg) > ![](https://i.imgur.com/RjiY37R.png) ![](https://i.imgur.com/PFAJ7Gf.png) > ![](https://i.imgur.com/P1xVDsg.png) > 環的 **有限** 子集必可找到加法單位元素,也就可以找到加法反元素,所以為子環 ## 102 ![](https://i.imgur.com/9AEt1np.png) > ![](https://i.imgur.com/AaktAsh.png) ![](https://i.imgur.com/5IB49MO.png) > ![](https://i.imgur.com/IWl1GYI.png) ![](https://i.imgur.com/7wPyORA.png) > ![](https://i.imgur.com/PzhhrGr.png) > ![](https://i.imgur.com/7HfGFvm.png) ![](https://i.imgur.com/yuh3dCY.png) > ![](https://i.imgur.com/2HAB5hC.png) > ![](https://i.imgur.com/XGyLXQN.png) ![](https://i.imgur.com/KV82lbq.png) >![](https://i.imgur.com/qnvNjUD.png) ![](https://i.imgur.com/O4Byt5K.png) > ![](https://i.imgur.com/BMgNI9m.png) > https://ccjou.wordpress.com/2010/01/12/特徵多項式蘊藏的訊息/ > 計算行列式時可針對$\lambda$所在的列去做拆分(餘因子),拆成$\lambda$和0,如此一來可清楚看出要求次方的係數是由哪些餘因子構成。 > 重要觀察:要找$X^k$的係數,就在對角線上選 $C(n, k)$個主對角線element,然後劃掉相關行、列,剩下的取方陣四角元素做行列式,再sum起來,及為所求。 ![](https://i.imgur.com/WnCZShd.png) > ![](https://i.imgur.com/77bYp1I.png) ![](https://i.imgur.com/1IajvQS.png) > TTTFF > 注意C選項,因為矩陣size: nxn,所以AB具有相同的非零特徵值之外,連零特徵值的個數都相同 ## 103 ![](https://i.imgur.com/ShQoGf5.png) > $4^{2^{m}}$ ![](https://i.imgur.com/WmCPBq0.png) > 求和算子:==$1/1-x$== > ![](https://i.imgur.com/Z16RNrP.png) > ![](https://i.imgur.com/cW3rLTT.png) ![](https://i.imgur.com/SHvXSlj.png) > ![](https://i.imgur.com/VdoGByL.png) ![](https://i.imgur.com/AZbx6Ib.png) ![](https://i.imgur.com/NxhNN05.png) > C小題: > Ans: 28 > 實矩陣佈於$R^n$時,維度是n > 複矩陣佈於$C^n$時,維度是n > 複矩陣佈於$R^n$時,維度是2n > 實矩陣佈於$C^n$時,不為vector space,反例:$i(1,0)$ > https://ccjou.wordpress.com/2013/09/23/複數的矩陣表示/ > D小題: > ![](https://i.imgur.com/EqU4DI7.png) ## 104 ![](https://i.imgur.com/yVVup73.png) > ![](https://i.imgur.com/QFWnHqj.png) > ![](https://i.imgur.com/fk2dNOL.png) ![](https://i.imgur.com/xD3yUDB.png) > ![](https://i.imgur.com/CLBEe3N.png) > ![](https://i.imgur.com/6lxAuok.png) ![](https://i.imgur.com/hHxyhVC.png) > 觀念:線性泛涵與對偶空間 https://ccjou.wordpress.com/2011/06/13/線性泛函與對偶空間/ > ![](https://i.imgur.com/lIYPFiK.png) > ![](https://i.imgur.com/3PDzrnC.png) >![](https://i.imgur.com/ZzYIDYd.png) > ![](https://i.imgur.com/ydYOTQz.png) > ## 105 ![](https://i.imgur.com/rwi0vSU.png) > Ans: DE > C選項:orthogonal set 可以包含0向量,orthornormal不行(因為0向量非單位向量) ![](https://i.imgur.com/tFQZ7Zo.png) > Ans: D > C選項False > 反例:$3x + 4y = 3, (x1,x2) = (1, 0), (x3, x4) = (0, 3/4)$ > but $(x1,x2) + (x3, x4) = (1, 3/4)$,帶入 $3x + 4y = 6$ 不等於 $min(\alpha i) = 3$ ![](https://i.imgur.com/id3A4sm.png) > https://ccjou.wordpress.com/2009/07/29/特殊矩陣-一:冪零矩陣/ > 冪零矩陣 的特徵值都是 0 > ![](https://i.imgur.com/wMQ0HvO.png) > $(I + N)(I - N + N^2 - N^3 + ... + N^k) = I - N^k = I$ > $(I + N)^{-1}=(I - N + N^2 - N^3 + ... + N^k)$ ![](https://i.imgur.com/UfF3y4y.png) > 利用 $||<x,y>|| = 1$ > 得 $x^2/4+ y^2 /9 = 1$ ![](https://i.imgur.com/C66Eqcg.png) > Ans = $6*2^n - 2 - n$ >![](https://i.imgur.com/ELigOUe.png) ![](https://i.imgur.com/afq90jx.png) >![](https://i.imgur.com/KFm2rZ7.png) ## 106 ![](https://i.imgur.com/eKa8Pyr.png) > 當行獨立時(列獨立取轉置)$A^{+} = (A^T A)^{-1} A^T$ > 行獨立代表$(A^T A)^{-1}$可逆,所以$A^{+} = (A^T A)^{-1} A^T$ > 行不獨立時,$rank(A) = rank(A^{T}A) < n$,不可逆,正規方程式有無限多解,要用SVD才可以求出$A^{+}$ > 這題用$A^{+} = U\Sigma^{+} V^T$硬幹會發現$A^T A$的特徵分解醜到爆,算不出來 ![](https://i.imgur.com/NTQ81HM.jpg) https://ccjou.wordpress.com/2013/07/03/moore-penrose-偽逆矩陣/ https://ccjou.wordpress.com/2014/02/11/矩陣的四個基本子空間的正交投影矩陣/ ![](https://i.imgur.com/aCUVjUI.png) > ![](https://i.imgur.com/YS39xIX.png) > key: 直線 $y' = (y/x) x'$ 的基底是 $(x, y)$ ![](https://i.imgur.com/JmEzwkp.png) > $\vec{v} = (\pm1/\sqrt{3}, \pm1/\sqrt{3})$ > 考點:主軸定理,二次型的應用 > https://ccjou.wordpress.com/2010/09/16/cholesky-分解/ > ![](https://i.imgur.com/cMT2NKL.jpg) > $f(x,y) = \begin{bmatrix} y1\\y2 \end{bmatrix} ^{T}\begin{bmatrix} 1&-1\\-1&4 \end{bmatrix}\begin{bmatrix} x1\\x2 \end{bmatrix}$ > \ > 又$\begin{bmatrix} 1&-1\\-1&4 \end{bmatrix}$為正定矩陣 > \ > 做$LDL^{T}$分解 > \ > $\begin{bmatrix} 1&-1\\-1&4 \end{bmatrix} = \begin{bmatrix} 1&0\\-1&1 \end{bmatrix} \begin{bmatrix} 1&-1\\0&3 \end{bmatrix} = \begin{bmatrix} 1&0\\-1&1 \end{bmatrix} \begin{bmatrix} 1&0\\0&3 \end{bmatrix} \begin{bmatrix} 1&-1\\0&1 \end{bmatrix} = \begin{bmatrix} 1&0\\-1&\sqrt{3} \end{bmatrix} \begin{bmatrix} 1&0\\0&1 \end{bmatrix} \begin{bmatrix} 1&-1\\0&\sqrt{3} \end{bmatrix}$ >\ >$f(x,y) = \begin{bmatrix} y1\\y2 \end{bmatrix} ^{T}\begin{bmatrix} 1&0\\-1&\sqrt{3} \end{bmatrix} \begin{bmatrix} 1&0\\0&1 \end{bmatrix} \begin{bmatrix} 1&-1\\0&\sqrt{3} \end{bmatrix}\begin{bmatrix} x1\\x2 \end{bmatrix}$ >\ >又 $f(u,v) = \begin{bmatrix} t1\\t2 \end{bmatrix} ^{T} \begin{bmatrix} 1&0\\0&1 \end{bmatrix} \begin{bmatrix} s1\\s2 \end{bmatrix}$ >\ >又$\begin{bmatrix} s1\\s2 \end{bmatrix}為\begin{bmatrix} x1\\x2 \end{bmatrix}$ 以 ${u, v}$ 為基底的座標 >\ >$\begin{bmatrix} x1\\x2 \end{bmatrix}$ 是以 ${x, y} (R^2的standard basis)$為基底的座標,所以$\begin{bmatrix} 1&-1\\0&\sqrt{3}\end{bmatrix}$ 就是從基底${u, v}$轉到 standard basis的 Transition matrix. 求其轉置即是 從standard basis轉到 ${u, v}$ basis的 Transition matrix。 >\ >$\begin{bmatrix} 1&-1\\0&\sqrt{3}\end{bmatrix}^{-1} = \begin{bmatrix} 1&1/\sqrt{3}\\0&1/\sqrt{3} \end{bmatrix} = \begin{bmatrix} u1&v1 \\u2&v2\end{bmatrix}$ > \ > 得解$\vec{v} = \begin{bmatrix} v1\\v2 \end{bmatrix} = (1/\sqrt{3}, 1/\sqrt{3})$(負的解發生在$LDL^{T}$分解時D取負) > > ![](https://i.imgur.com/kcfJJ3n.png) ![](https://i.imgur.com/P3FacE4.png) > Bipartite or two colorable(a graph is bipartite if and only if there is no odd length cycle) ## 107 ![](https://i.imgur.com/mEN8RYm.png) ![](https://i.imgur.com/6Ie1cio.png) > 解題步驟:先寫出$A{n}$,然後開始微分(積分),起始項都是 n = 0。 ![](https://i.imgur.com/qTOq88a.png) ![](https://i.imgur.com/XZTrA8L.png) > ![](https://i.imgur.com/HYRCJsH.png) > ![](https://i.imgur.com/ATnz5Cu.png) ![](https://i.imgur.com/G2jjw7E.png) ![](https://i.imgur.com/s5oQemJ.png) > https://ccjou.wordpress.com/2011/05/19/正交補集與投影定理/ ## 108 ![](https://i.imgur.com/XxmeCwK.png) ![](https://i.imgur.com/hy3bJmp.png) ![](https://i.imgur.com/D2a7E7z.png) > 利用進出公式:${n\choose m} = n/m * {n-1\choose m-1}$ > ${2n\choose n+1} + {2n\choose n} = {2n+1\choose n+1} = {2n+1\choose n}$ > ${2n+1\choose n} * 2 * (n+1)/(n+1) = {2n+2\choose n+1}$ ![](https://i.imgur.com/peolrbr.png) > $A = 2n, B = n+1$ > https://ccjou.wordpress.com/2013/10/02/二項式係數公式/ > ![](https://i.imgur.com/AcNNNKo.png) > ![](https://i.imgur.com/NWjsbuQ.png) ![](https://i.imgur.com/uj5nC2Q.png) > ACE > ![](https://i.imgur.com/rFzoNJ4.png) > question: 任何vector space都有基底?有限?無限? > https://ccjou.wordpress.com/2010/06/15/基底與維度-常見問答集/ > 任何有限維向量空間都有基底,({0}的基底為空集合,維度為0) > https://ccjou.wordpress.com/2016/02/24/無限維向量空間的基底/ >根據選擇公理,任何無限維向量空間,存在一個Hamel基底 ![](https://i.imgur.com/INdliRj.png) > All > ![](https://i.imgur.com/HGESilL.png) > question: $N(A) 和 N(A^{-1})$的關係?相同?在什麼狀況下相同? ![](https://i.imgur.com/DaEPxax.png) > ABCE > ![](https://i.imgur.com/W4uZRBf.png) > A選項:若是由jordan 分塊(廣義特徵空間)構成的直和,則不可對角化,但是有jordan form > B選項:正規算子的性質,$N(A) = N(A^{*})$(可由乒乓協議 $x^{*}(Ay) = (A^{*}x)^{*}y$證明), 平移之後還是正規算子,所以$N(A - \lambda * I) = N(A^{*} - \lambda * I)$,所以對於特徵值$\lambda$而言,具有相同的特徵向量 > 或者也可由下圖中觀念來證明有相同的特徵向量 > ![](https://i.imgur.com/4Arrc9p.png) > C選項:我認為解答錯了,任何特徵多項式必定可以因式分解(只是根可能不是整數而已) > https://ccjou.wordpress.com/2010/01/12/特徵多項式蘊藏的訊息/ > https://ccjou.wordpress.com/2010/11/10/jordan-形式大解讀-上/ >https://ccjou.wordpress.com/2009/07/22/從實數域到複數域/ >https://ccjou.wordpress.com/2010/01/05/特殊矩陣-九:-hermitian-矩陣/ >https://ccjou.wordpress.com/2009/10/01/特殊矩陣-六:正定矩陣/ >https://ccjou.wordpress.com/2009/08/12/特殊矩陣-二:正規矩陣/ >https://ccjou.wordpress.com/2012/10/19/實對稱矩陣特徵值變化界定的典型問題/ >https://ccjou.wordpress.com/2010/03/16/hermitian-矩陣特徵值的變化界定/ ![](https://i.imgur.com/wf0rrN3.png) > ![](https://i.imgur.com/VhPUCYk.png) > ![](https://i.imgur.com/V69GN5k.png) > https://ccjou.wordpress.com/2011/06/13/線性泛函與對偶空間/ > https://ccjou.wordpress.com/2011/04/08/線性變換集合構成向量空間/ㄋ > ![](https://i.imgur.com/lIYPFiK.png) > ![](https://i.imgur.com/3PDzrnC.png) * Note: 計算高階矩陣的inverse時,可以先對每一列做除法,降低計算難度,反正計算$[A|I] -> [I|A^{-1}]$三種列基本運算都可以用。 > https://ccjou.wordpress.com/2012/10/04/三階逆矩陣公式/ ## 109 ![](https://i.imgur.com/ov7wygw.png) ![](https://i.imgur.com/1sVr1jb.png) ![](https://i.imgur.com/Tc2fCaE.png) ![](https://i.imgur.com/1SMWFg6.png) ![](https://i.imgur.com/uhcR9HA.png) ![](https://i.imgur.com/bcuTScS.png) * 計算虛反矩陣要點: > 看$A^{T} or A$ 誰的$A^{T}A$ size比較小,就用誰計算SVD分解 > 在計算SVD分解時,若上ㄧ步有取轉置$B = A^{T}$來計算,要時刻保持注意,注意$U, V$兩個矩陣,以及他們的他們的size,若特徵向量不夠,要再去相對的子空間生出來。 --- ![](https://i.imgur.com/hIQLA8H.png) ![](https://i.imgur.com/VOIhS5R.png) ## 109 台大電信丙 ![](https://i.imgur.com/tUszHd6.png) ![](https://i.imgur.com/GJa7Khi.png) ![](https://i.imgur.com/3Z83uG7.png) ## 106 & 108 台大電信丙 ![](https://i.imgur.com/NWU0arF.png) > TRUE > proof: > $<v,v_i> = <w, vi>, i = 1, 2,...,n$ > $<v,v_i> - <w, vi> = 0, i = 1, 2,...,n$ > $<v-w, vi> = 0, i = 1, 2,...,n$ > $S$ 是 $R_n$的基底 > 所以$v-w = 0$, $v = w$ ![](https://i.imgur.com/KqreiJi.png) > TRUE > 實對稱矩陣性質 > proof: > $Ax = \lambda x$ > $x^{T}Ax = \lambda x^{T}x = \lambda ||x||^{2}$ > 因為$x^{T}Ax \in R$,所以$\lambda ||x||^{2}\in R$ ,又$||x||^{2}\in R$,所以$\lambda \in R$ ![](https://i.imgur.com/OYmexSZ.png) > A沒有半正定!如果是半正定此題就是True > False: > 反例: > $A = \begin{bmatrix} 0&0&1\\0&0&0\\1&0&0\end{bmatrix}$ > > $v = \begin{bmatrix} 1&0&0 \end{bmatrix}$ ![](https://i.imgur.com/VXmepJk.png) > 半正定才可以保證特徵值 >= 0,才可以把A開根號(對角矩陣主對角線元素都 >= 0) ![](https://i.imgur.com/pO70NsO.png) ![](https://i.imgur.com/22FiD8g.png) ![](https://i.imgur.com/1U3zc9B.png) ![](https://i.imgur.com/Pn9DsEG.png) ![](https://i.imgur.com/SnBiDko.png) > 正交補空間性質 ![](https://i.imgur.com/Sic2TDa.png) > 解的種類