# CVAT SOP > [name=JayHsu][time=Thu, May 6, 2021 9:38 AM] ![](https://i.imgur.com/i8rTmoU.gif) [TOC] ## CVAT Server Install https://github.com/openvinotoolkit/cvat/blob/develop/cvat/apps/documentation/installation.md 1. 安裝docker, loging docker ```shell= sudo apt-get update sudo apt-get --no-install-recommends install -y \ apt-transport-https \ ca-certificates \ curl \ gnupg-agent \ software-properties-common curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - sudo add-apt-repository \ "deb [arch=amd64] https://download.docker.com/linux/ubuntu \ $(lsb_release -cs) \ stable" sudo apt-get update sudo apt-get --no-install-recommends install -y docker-ce docker-ce-cli containerd.io sudo groupadd docker sudo usermod -aG docker $USER sudo apt-get --no-install-recommends install -y python3-pip python3-setuptools sudo python3 -m pip install setuptools docker-compose docker login ``` 2. clone cvat project & docker image ```shell= sudo apt-get --no-install-recommends install -y git #git clone https://github.com/opencv/cvat git clone https://github.com/openvinotoolkit/cvat.git cd cvat docker-compose up -d ``` ![](https://i.imgur.com/j3a9xaJ.png) 如果download很慢可以從其他電腦export後import ```shell= docker save -o {outputname.tar} {imagesname} docker load -i {imagesname} ``` 3. create cvat admin account ``` docker exec -it cvat bash -ic 'python3 ~/manage.py createsuperuser' ``` 4. 修改port, mount volumes ``` vi docker-compose.yml #修改以下內容 ports: - '9090:80' ``` ```shell= vi docker-compose.override.yml #copy&paste以下內容 version: '3.3' services: cvat_proxy: environment: CVAT_HOST: 10.109.6.13 ports: - '81:81' cvat: environment: CVAT_SHARE_URL: 'Mounted from /mnt/share host directory' volumes: - cvat_share:/home/django/share:ro volumes: cvat_share: driver_opts: type: none device: /mnt/hdd/share o: bind ``` 5. launch cvat ``` cd cvat docker-compose up -d ``` ## CVAT Client ### 上傳Data 將資料上傳至/mnt/hdd/share ### 建立project 1. create new project 2. 輸入project name, 定義label 3. submit ![](https://i.imgur.com/CVTewLx.png =220x) ![](https://i.imgur.com/7Xwofg1.png =220x) ![](https://i.imgur.com/6ojFW3V.png =220x) ### 建立task 1. create new task 2. 填寫task基本資訊 - 一個task可以是一個要被標注的video (mp4) - 也可以是一個要被標注的影像資料夾 (jpg) 3. 填寫task進階設定 - Frame step: 每幾個frame標注一張 - Segment size: 把標注資料分成數個job, 設定每個job的影像數量 4. submit後回project頁面可以看到出現新的task 5. 進入task頁面 - 可以看到一段待標注影片被分成數個Job - 可以將task assign給某個人標注 - 也可以將不同Job assign給不同人標注 - 可以設定Reviewer ![](https://i.imgur.com/oHfjO6W.png =220x) ![](https://i.imgur.com/DJo7Aq5.png =220x) ![](https://i.imgur.com/H8RKyJf.png =220x) ![](https://i.imgur.com/TOp6yAt.png =220x) ![](https://i.imgur.com/mKXfabu.png =220x) ### 開始標注 1. 點選Job進入標注頁面 2. 使用上方的控制列選擇要標注的影像 3. 點選左方的長方形按鈕(第7個)標注bounding box (for object detection model) 4. 選擇要標注物件的Label, 並點選Shape - Shape按鈕標示標注一張影像 - Track按鈕表示在連續的影像標注同一個物件, 使用方法參考教學連結: [教學連結](https://github.com/openvinotoolkit/cvat/blob/develop/cvat/apps/documentation/user_guide.md#track-mode-basics) ![](https://i.imgur.com/cAoA42r.jpg =200x) 5. 快捷鍵: ``` F Go to the next frame D Go to the previous frame V Go forward with a step C Go backward with a step N Repeat the latest procedure of drawing with the same parameters ``` ## TODO 1. 如何在Server上用command export已標注資料 - https://openvinotoolkit.github.io/cvat/docs/administration/basics/rest_api_guide/ ## Issue 1. 在12安裝的時候無法正常前用 ![](https://i.imgur.com/gW66N0H.png =400x) 2. 404 ```shell docker compose down export CVAT_HOST=10.109.6.12 docker compose up -d ```