# 1988 IMO Problem 6
International Mathmatical Olympiad
---
## Problem
Let $a, b \in {\displaystyle \mathbb {N}}$ s.t. $(ab + 1)|(a^{2} + b^{2})$.
Show that $\frac {a^{2} + b^{2}}{ab + 1}$ is the square of an integer.
----
## Solve
Let $a', b'$ = $min(a+b)$ and $a > b$,
$k = \frac {a^{2} + b^{2}}{ab + 1}$ is not a square of an integer.
We have $a'^2 + b'^2 = k(a'b' + 1)$
----
## Solve
$a'^2 + b'^2 = k(a'b' + 1)$
$\implies a'^2 - (kb')a' + (b'^2-k) = 0$
----
## Solve
Since we have $a'^2 - (kb')a' + (b'^2-k) = 0$,
Consider this quadratic equation:
$x^2 - (kb')x + (b'^2-k) = 0$
Let the solution other than $a'$ be $x'$
----
## Solve
By Vieta's Formula, another root
$x' = kb' - a' = \frac{b'^2 - k}{a'}$
And we have
$x' = \frac{b'^2 - k}{a'} ≤ \frac{b'^2}{a'} < a'$
$\implies x' + b' < a' + b'$ (Contradict!)
----
# Solve
$k$ can't be a number that is not square of an integer.
$\implies k$ is square of an integer.
Q.E.D.
---
# The End
---
{"description":"1988 IMO #6","contributors":"[{\"id\":\"b9ecac5b-de1c-410f-b6dd-10212b25ea3e\",\"add\":1033,\"del\":64}]","title":"1988 IMO Problem 6"}