---
lang: zh-tw
---
暑假到研究所前雛形規劃
===
## 中正新生行事曆 [Link](https://freshman.ccu.edu.tw/files/123456789.pdf)
| 時間 | 內容 | 狀態 |
|:------:|:-----------:|:----:|
| 7/1~7/20 | 學籍系統登錄 | Done |
| 8/14~ | 繳交學雜費 | |
| 8/24 ~ 8/28 | 去中正上LabView課程 | |
| ~8/30 | 填寫【新生兵役資料表】(至新生表單處下載),請於109年8月30日前寄回或繳交至學務處學生安全組| done |
| ~ | ==「學術倫理教育」== 課程: [Link](https://ethics.moe.edu.tw/courses/my/) 每天都要看2篇| ==done [修課證明連結](https://drive.google.com/file/d/1V7G_iQTwa4ajV3Qqe8_ZC2_f7FgxZNPI/view?usp=sharing)== |
| ~ | ==中正選課系統[Link](https://kiki.ccu.edu.tw/~ccmisp06/cgi-bin/class_new/)==||
| 8/31~9/4| ==**LabView課程**== | ==地點: 創新大樓201 時間: 早上9:30開始== |
| 8/31 | 1.校內學生健康檢查, 地點:本校大禮堂($620), 時間: 9:50 ~ 10:40, 要帶學生健康檢查資料表 | ==Done== |
| 8/31 | 領學生證 | ==地點:教學組== |
| 9/1 | **指導碩士論文同意書-拿給教授簽(教授會幫我拿去交給系辦)** | ==Done== |
| 9/3(禮拜四) | **新生始業典禮** ==Google試算表有詳細流程...等== | ==地點: 本校大禮堂 時間: 8:30~10:00==|
| ==9/2 ~ 9/5== | ==**新生第一階段選課**== | 教學組分機 11212 、 11208|
| ==9/7 ~ 9/21== | ==第二階段選課加退== | 教學組分機 11212 、 11208|
| 9/7 | 開始上課 | |
| | | |
## 每日行程 (約10hr, 禮拜日休息)
| 時間 | 學習內容 |
|:------:|:-----------:|
| 早上 08:00~12:40|**[ML & AI](https://www.youtube.com/channel/UC2ggjtuuWvxrHHHiaDH1dlQ) , [Pytorch Document](https://pytorch.org/docs/stable/index.html) , [Pytorch Example](https://github.com/pytorch/examples) , ==[醫學訊號分析原理與 MATLAB 程式應用實作](https://www.youtube.com/playlist?list=PLx_IWc-RN82uKOdafF4v4U5R_u4qmYaiu)==**|
| 下午 13:10~16:30| [數位影像處理](https://www.youtube.com/playlist?list=PLI6pJZaOCtF2fjFxpVGAqWgENVZw69QD2), [二維自動化光學檢測及應用](https://www.youtube.com/playlist?list=PLI6pJZaOCtF0yLRQrV7JOBUaAfJ8Q-elm), [數位信號處理](https://www.youtube.com/playlist?list=PLI6pJZaOCtF2UPD5TUmLDbBAj-kU5x90Y), [作業系統](https://www.youtube.com/playlist?list=PLS0SUwlYe8czigQPzgJTH2rJtwm0LXvDX), [生物統計學](https://www.youtube.com/playlist?list=PLuz2BOX_eyHGm8F0Dx7k60lUwvgVf7Mnd)|
| 晚上 19:30~21:30 (讀1休1)| [Leetcode](https://leetcode.com/) , [解題思路](https://www.youtube.com/user/xxfflower) 看論文  |
## 學習進度
| 日期 | 早上 | 下午 | 晚上 |
|:----:|:-----------:|:-----:|:-----:|
| 6/25 | Pytorch-Handbook: Ch01-1_tensor_tutorial | 生物統計學01~04 | Leetcode + Python decoractor |
| 6/27 | [Pytorch-Deep Learning (02~04)](https://www.youtube.com/watch?v=9j-_dOze4IM&list=PLQVvvaa0QuDdeMyHEYc0gxFpYwHY2Qfdh&index=4) , Pytorch-Handbook: Ch03-3_neural_networks_tutorial , **下次要開始讀 torch.nn & torch.nn.functional & torch.optim**| 作業系統-Page Replacement + Leetcode | **Take a rest** |
| 7/1 | DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ + **ML Lecture (2,3-1)**| 數位影像處理 單元二 + 單元三 | Leetcode + Python Iterable |
| 7/2 | **ML Lecture (4,5)** + **醫學訊號分析(s1, s2, s3-2)**| 作業系統(15A ~ 16D) | **Take a rest** |
| 7/3 | **醫學訊號分析(3-3, 4-1, 4-2)** + Pytorch-book(Ch03-1)| Pyotch-book(Ch03-2) + 數位影像處理單元四 | Leetcode |
| 7/4 | **醫學訊號分析(5-1~5-3, 6-1)**+ Pytorch-book(Ch03-1) | Pyotch-book(Ch03-2) + | **Take a rest** |
| 7/5 | **Take a rest** | **Take a rest** | **Take a rest** |
| 7/6 | **醫學訊號分析(6-2)** + Pytorch-book(Ch04) + **Implement ResNet**| 作業系統(17-A ~ 18-A) + **ML Lecture (7, 8)** | 複習Pytorch-book(Ch04) + ML Lecture (9) + Leetcode |
| 7/7 | **醫學訊號分析(7-1~7-3)** + Pytorch-book(Ch05) | 數位影像處理單元五 + Leetcode | **Take a rest** |
| 7/8 | **Review{醫學訊號分析(7-1~7-3) + Pytorch-book(Ch02~Ch04)}** | **Review{Pytorch-book(Ch05)}** + ML Lecture (9~12) | Leetcode + 生物統計學(05) |
| 7/9 | 生物統計學(06, 07) | DL-CV(D1~D5) + **醫學訊號分析(8-1~8-3)**| **Take a rest** |
| 7/10 | 數位影像處理單元六+DL-CV(Day6) | 數位影像處理單元七八 + **ML Lecture (13)** | **Take a rest** |
| 7/11 | 搬宿舍 | 搬宿舍 | **Take a rest** |
| 7/12 | **Take a rest** | **Take a rest** | **Take a rest** |
| 7/13 | **DL-CV(Day7~Day11) + 讀RegNet論文(1. ~ 2) + Train RegNet on Cifar-10** | **讀RegNet論文(3 ~ 3.2)** + DLHLP-Controllable Chatbot| LeetCode |
| 7/14 | **讀RegNet論文(Done)** | 二維自動化光學檢測及應用(u01 ~ u02) | **Take a rest** |
| 7/15 | **期刊論文閱讀技巧** + ML Lecture(14~15)| ML Lecture (16~18) + DL-CV(~Day17) | LeetCode |
| 7/16 | 領畢業證書 | 交畢業證書 | **Take a rest** |
| 7/17 | 複習DL-CV(Day01~Day19) | ML Lecture(18~21) | **Leetcode** |
| 7/18 | 複習Pytorch book| ML Lecture(22~23) | **LeetCode** |
| 7/20 | DL-CV(Day25) + **(R-CNN, Fast R-CNN, Faster R-CNN)** | DL-CV(Day26, 27) + Faster R-CNN | **Take care of dad all day** |
| 7/21 | **二維自動化光學檢測及應用(==Done==)**| DL-CV(Day28) + ML Lecture(Ensemble) + 數位信號處理(第一、二單元) | **Take a rest** |
| 7/22 | 數位信號處理(第三單元) + ML Lecture(Reinforcement Learning) + Advanced DL(Review) | **Take a rest** | **Take a rest** |
| 7/23 | 去中正聽碩士口試 | 去中正聽碩士口試 | **Take a rest ** |
| 7/24 | **Take a rest** | **Take a rest** | **Take a rest** |
| 7/25 | **Implement GAN** + DL-CV + Review Pytorch book | Advanced ML(~video5) + GAN2018(Lecture1) | **Take a rest** |
| 7/27 | Pygame(Hangman game) | DL-CV + New Optimizer(DL) | Expert Python |
| 7/28 | Advanced ML(~video8) + DeepLearning Book(Ch02) | Pytorch review | **Take a rest** |
| 7/29 | DeepLearning Book(Ch03) + Review Pytorch(dataset, DataLoader) | DL-CV + Advanced ML(~video13) + MATLAB教學(~video2) | Leetcode |
| 7/30 | **複習Python for Data Analysis(ch04 Numpy Basis)** + DeepLearning Book(Ch04) | MATLAB教學(~video4) + MATLAB程式設計與影像處理(~video2) | images_tb(Ch01) |
| 7/31 | Data Analysis with Python - Full Course + **複習Python for Data Analysis** | **PyTorch for Deep Learning - Full Course(~4:45:13)** | LeetCode |
| 8/1 | **PyTorch for Deep Learning - Full Course(Done)** | MATLAB程式設計與影像處理(~video6) | **Take a rest** |
| 8/2 | **Take a rest** | **Data_Science(Ch02, Ch03) + Python for Data Analysis(Ch05 pandas)** | **Take a rest** |
| 8/3 | Data_Science(~Ch05) + DeepLearning(~Ch5-2) | MATLAB程式設計與影像處理(~Lesson8) + MATLAB教學(~video5) | |
| 8/4 | DeepLearning(~5-4) + Data_Science(~Ch06) + MATLAB教學 - 06 + | MATLAB程式設計與影像處理(~Lesson9)| |
| 8/5 | Review 醫學訊號分析原理與 MATLAB 程式應用實作 | 學術倫理教育課程(~0104) | 學術倫理教育課程(~0106)|
| 8/6 | DeepLearning(~5-6) + Python for Data Analysis (Ch07) | AdvancedML(~video14) + MATLAB教學(影像處理一,二) + 學術倫理教育課程(~0106) | 學術倫理教育課程(~0110)|
| 8/7 | MATLAB教學(~video12) | | |
| 8/8 | Python for Data Analysis (Ch08) + 10分鐘學簡報(video64~video62) + Python_Plays_GTA(~video4) | OpenCV Python for Beginners(~2:04:34) + AdvancedML(~video18) | |
| 8/10 | 數位影像處理(單元二~三) + 數位信號處理器(單元一) | 數位信號處理器(單元二~三) + NextStepML(Anomaly Detection) | OpenCV Python for Beginners(~3:32:08) |
| 8/11 | Python for Data Analysis (Ch09) + 數位影像處理(單元四-half) | 數位影像處理(單元四) + Attack ML Models + 10分鐘學簡報(video61~video60) | OpenCV Python for Beginners(~4:32:18) |
| 8/12 | Python for Data Analysis(Ch10) | 數位影像處理(單元五) + OpenCV Python for Beginners(~6:36:18) | |
| 8/14 | OpenCV Python for Beginners | OpenCV Python for Beginners(Done) + 數位影像處理(單元七) | |
| 8/16 ~ 8/18 | CVGIP | CVGIP | CVGIP |
| 8/19 | DL-CV review(Day1~10) + OpenCV Python for Beginners review(30%) | OpenCV Python for Beginners review(done) + Explainable ML | take a rest |
| 8/20 | Life-Long Learning + Meta Learning + More about Auto-encoder | Flow-based Generative Model + Transformer | ELMO + BERT + GPT|
| 8/21 | Python for Data Analysics (Ch10~12) | Go to Hospital | Pytorch |
| 8/22 | Pytorch | Pytorch | Pytorch |
| 8/23 | Pytorch | Pytorch | Pytorch + Network Compression |
| 8/24 | GAN2018(Lecture1~3) | GAN2018(Lecture4, 5) | **Take a rest** |
| 8/25 | **Take a rest** | **Take a rest** | **Take a rest** |
| 8/26 | Preview LabView | | |
| 8/30 | 搬宿舍 | 搬宿舍 | 二維自動化光學檢測及應用(u01~u02) |
| 8/31 | LabView課程 背多益單字(Unit1) | LabView課程 | **MatLab教學(02~03)** **複習OpenCV** **Review今日課程(Labview)** Review多益(Unit1) |
| 9/1 | MATLAB教學(04) LabView課程 背多益單字(Unit2) | LabView課程 | 黃能富教授計算機網路概論(1A~1B) 背多益單字(Unit2) 複習OpenCV |
| 9/2 | MATLAB教學(05) LabView課程 背多益單字(Unit3)| LabView課程 整理實驗室 | 黃能富教授計算機網路概論(1C) 複習OpenCV(Done) LabViewCore1(p1~p290) |
| 9/3| | MATLAB教學(06, 08) | | MATLAB教學(09) 黃能富教授計算機網路概論(2A~2E) |
| 9/4 | MATLAB教學-影像處理二 | | |
| 9/7 | | | 演算法Ch2-Algorithm analysis 遙測原理簡介 多益單字(~Unit8) |
| 9/8 | 多益單字(Unit9) 黃能富教授計算機網路概論(1A~1B) | | 黃能富教授計算機網路概論(1C) + 遙測原理簡介 |
| 9/9 | 黃耀廷演算法(一), Peak Finding, 多益單字(Unit10) | | 黃耀廷演算法(DP, Shortest Path, P, NP) |
| 9/10 | DL-CV(Review) | | |
| 9/11 | Algorithm | ==Faster RCNN(Paper) done== | |
| 9/12 | 中正計算機網路(Ch1) | 演算法(Divide and Conquer, DP) | Take a rest |
| 9/14 | Mask rcnn| | Deep Learning Theory |
| 9/15 | Review Pytorch | ResNet paper | 黃能富(Application Layer) |
| 9/16 | 多益單字(Unit17) | 遙測HW | 做報告, Deep Learning Theory(done) |
| 9/17 | 多益單字(Unit18, 19), Advanced Topic DL(~2) | | Advanced Topic DL(3) Review電腦網路 Preview演算法(DP) |
| 9/18 | 多益單字(Unit20, 21) Advanced Topic DL(3) | | |
| 9/19 | Review Computer_Network, Algorith | Advanced Topic DL(~11) | |
| 9/21 | | | 多益單字(Unit22, 23) Advanced Topic DL(~14) |
| 9/22 | 演算法(Shortest-Path Problems & P, NP, NP-completeness) | | 多益單字(Unit24) 生醫HW1 演算法(P, NP, NP-completeness) |
| 9/23 | 多益單字(Unit24) 演算法(P, NP, NP-completeness) | | Advanced Topic DL(~18) 多益單字(Unit25) |
| 9/24 | 多益單字(~Unit27) 演算法 | | |
| 9/26 | 電腦網路 | 演算法 LabView | |
| 9/28 | | HW | LabView|
| 9/29 | 多益單字(~Unit32) LabView | 遙測作業(Done) 解剖學(一)運動 | |
| 9/30 | 多益單字(~Unit35) 解剖學(二)循環 | | |
| 10/5 | | 遙測+生醫作業 | 解剖學(一)運動 多益單字(Unit36) 演算法(Shortest Path) |
| 10/6 | 多益單字(~Unit38) 解剖學(二~三) | 複習生醫影像 Data_Augmentation | 黃能富教授計算機網路概論(2A~2C)_ApplicationLayer |
| 10/7 | 多益單字(~Unit40) 複習生醫影像(10/7) 複習遙測影像 | Review Computer_Network(Book) | 演算法(2020_0911, 2020_0918) 多益單字(~Unit41) |
| 10/8 | 多益單字(~Unit42) 演算法(P, NP, NP-completeness) | | |
| 10/9 | 電腦網路(Note) | 演算法(Shortest_path, SAT) | |
| 10/11 | | 電腦網路(Book) | |
| 10/12 | | Scirtothrips(train_on_yolov3) | Machine_Learning(Gradient_Descent, Classification) 多益單字(~Unit43) |
| 10/13 | 多益單字(~Unit45), Deep Learning with PyTorch: A 60 Minute Blitz, Machine_Learning(Logistic Regression) | 計算機專題(10/12心得) | OpenCV(Ch02~Ch03) Machine_Learning(Deep_Learning, Backpropagation) |
| 10/14 | 多益單字(~Unit47) Machine_Learning(Tips_for_DNN) | Remote_Sensing(Note) | 演算法 Machine_Learning(CNN) |
| 10/15 | 多益單字(~Unit48) OpenCV(~Ch06) | | |
| 10/16 | | | |
| 10/17 | 演算法 | 眼算法 | |
| 10/19 | | Paper | 演算法(10/16) Machine_Learning(~L14) |
| 10/20 | 多益單字(~50) 演算法(Divide and Conquer, Dynamic Programming) | Paper | 演算法(Shortest Path, P NP, SAT) |
| 10/21 | 演算法 | 演算法 | 演算法 |
| 10/22 | 演算法 | 演算法 | 演算法 |
| 10/23 | | 演算法作業 | 演算法作業, 複習計算機網路 |
| 10/24 | 計算機網路 | | |
| 10/26 | | Paper | Paper + 生醫複習 |
| 10/27 | Paper, 遙測複習 | Paper | 計算方法(DP, Shortest Path) + 2019作業 |
| | | | |
| | | | |
## 讀書資源
---
### 碩一上
1. 遙測科學概論: [Link](https://sites.google.com/view/ncuxocw/%E9%96%8B%E6%94%BE%E8%AA%B2%E7%A8%8B/%E8%AA%8D%E8%AD%98%E5%9C%B0%E7%90%83%E7%B3%BB%E5%88%97/%E9%81%99%E6%B8%AC%E7%A7%91%E5%AD%B8%E5%B0%8E%E8%AB%96)
2. 影像處理: [Link](https://sites.google.com/site/ncuocw/course/63016/document)
3. 中正計算方法: [Link](https://www.youtube.com/playlist?list=PLry9mqkbzijKYtoqYtQ9n0TOgfW0_1vUc)
4.
### Machine Learning & Deep learning
---
**DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ: [LINK](https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html#deep-learning-with-pytorch-a-60-minute-blitz)**
---
#### Document
+ Pytorch: https://pytorch.org/docs/stable/index.html
+ Tensorflow: https://www.tensorflow.org/api_docs/python/
---
#### Youtube Playlist
+ Machine Learning: https://www.youtube.com/watch?v=CXgbekl66jc&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49
+ Advanced Topic in ML: https://www.youtube.com/watch?v=IzHoNwlCGnE&list=PLJV_el3uVTsPMxPbjeX7PicgWbY7F8wW9
+ Structured Learning: https://www.youtube.com/watch?v=5OYu0vxXEv8&list=PLJV_el3uVTsNHQKxv49vpq7NSn-zim18V
+ Deep Learning Theory: https://www.youtube.com/watch?v=KKT2VkTdFyc&list=PLJV_el3uVTsOh1F5eo9txATa4iww0Kp8K
+ GAN_2017: https://www.youtube.com/watch?v=G0dZc-8yIjE&list=PLJV_el3uVTsMd2G9ZjcpJn1YfnM9wVOBf
+ GAN_2018: https://www.youtube.com/watch?v=DQNNMiAP5lw&list=PLJV_el3uVTsMq6JEFPW35BCiOQTsoqwNw
+ Deep Reforcement Learning: https://www.youtube.com/watch?v=z95ZYgPgXOY&list=PLJV_el3uVTsODxQFgzMzPLa16h6B8kWM_
+ Next step of ML_2019: https://www.youtube.com/watch?v=XnyM3-xtxHs&list=PLJV_el3uVTsOK_ZK5L0Iv_EQoL1JefRL4
+ Deep Learning for NLP_2020: https://www.youtube.com/watch?v=nER51ZyJaCQ&list=PLJV_el3uVTsO07RpBYFsXg-bN5Lu0nhdG
+ ==Machine Learning Foundation(Warning of Math)==: https://www.youtube.com/watch?v=nQvpFSMPhr0&list=PLXVfgk9fNX2I7tB6oIINGBmW50rrmFTqf
+ ==Machine Learning Technique(Warning of Math)==: https://www.youtube.com/watch?v=A-GxGCCAIrg&list=PLXVfgk9fNX2IQOYPmqjqWsNUFl2kpk1U2
---
#### Github
+ Hands on Machine Learning: https://github.com/ageron/handson-ml2
+ Pytorch Hand Book: https://github.com/zergtant/pytorch-handbook
+ Pytorch Official Example: https://github.com/pytorch/examples
+ Pytorch Tutorial: https://github.com/yunjey/pytorch-tutorial
+ Pytorch book: https://github.com/chenyuntc/pytorch-book
---
#### Colab
+ PyTorch_Introduction.ipynb: https://colab.research.google.com/drive/1Xed5YSpLsLfkn66OhhyNzr05VE89enng#scrollTo=-m-ml0NoMTim
+ PyTorch_Practice: https://colab.research.google.com/drive/1pzjsuDYiA5SXG7sEf3pZZ6Vr_IlhohbQ#scrollTo=6l1pQR1WGy7T
+ Pytorch-book-ch04: https://colab.research.google.com/drive/18d0MPnCKd2uTOHg9cbev4iXQkki40U-D#scrollTo=Aj8udBWO7Hqw
+ Pytorch-book-ch05: https://colab.research.google.com/drive/1lmobD5Q6cDV6uunbgXMgiaQL1NdXJu5W#scrollTo=5P2FxuDTlht4
+ Cifar-10 (ResNet & RegNet):
https://colab.research.google.com/drive/16Sxj1hcEoKdkPH6rgfd4xG6prXN1mmQZ
+ Anime **GAN**:
https://colab.research.google.com/drive/1q6LgTgGCTIkqqSaL3SdeWVTX7B2owvDY#scrollTo=dfxLlq7e4E7f
---
#### Pytorch Note or Tips:
- PyTorch Recipes: [Link](https://pytorch.org/tutorials/recipes/recipes_index.html)
- PyTorch 中模型的使用: [LINK](https://zhuanlan.zhihu.com/p/73893187)
- Pytorch Facial Keypoints Prediction: [LINK](https://medium.com/diving-in-deep/facial-keypoints-detection-with-pytorch-86bac79141e4)
- Pytorch Initialize: [Link](https://blog.csdn.net/ganxiwu9686/article/details/103297952)
---
#### **Image Detection Related**
- Faster R-CNN: [Link](https://zhuanlan.zhihu.com/p/31426458)(==詳解==) [Link](https://arxiv.org/pdf/1506.01497.pdf)(==Paper==)
---
#### **PyTorch for Deep Learning - Full Course**
1. **Linear-regression**:https://colab.research.google.com/drive/1k6-mWckth55eqHuMpfLMOMWrk6TIw8KO#scrollTo=IOJEF_nFkDD3
2. **Logistic-regression**:https://colab.research.google.com/drive/1SqWiDi5_7NYjB6miRciQcLX0K44mXXNb
3. **Cifar10-CNN**:https://colab.research.google.com/drive/1SBmue2fxGXMOz2vb_Ia_t_-aRuK-pkDx#scrollTo=WiCSKTZaObB2
---
#### **Object Detection**:
1. R-CNN(知乎): https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote
2. Object Detection Algorithms(Medium): https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
3. Pytorch initialize:https://pytorch.org/docs/stable/nn.init.html
---
#### Paper:
==AI 所有領域最優資料搜尋神器== — [Papers with Code](https://paperswithcode.com/)
1. **RegNet**
- **Designing Network Design Spaces(RegNet)**:
https://arxiv.org/pdf/2003.13678.pdf
- **Regnet Implement(fork)**:
https://github.com/wilile26811249/regnet
- **RegNet translate and interpretation**
https://blog.csdn.net/qq_41185868/article/details/105278487#2.%20Related%20Work
---
### Matlab
1. **MATLAB教學**:https://www.youtube.com/playlist?list=PLVHBjRDK0kALcQMwAFbR5q2driYZCHNIx
2. **MATLAB程式設計與影像處理**:https://www.youtube.com/playlist?list=PLx_IWc-RN82vgwbjcVq_KfpBth4UWKu1V
#### 影像分割
1. **3D U-NET**:https://zhuanlan.zhihu.com/p/57530767
---
### Other Resource:
1. 十分鐘學簡報: [Link](https://www.youtube.com/playlist?list=PLdkvZCcLvKbYs5IFuPpMbGed4x31vhmAP)
2. Python Plays: Grand Theft Auto V: [Link](https://www.youtube.com/playlist?list=PLQVvvaa0QuDeETZEOy4VdocT7TOjfSA8a)
3. OpenCV Python for Beginners: [Link](https://www.youtube.com/watch?v=N81PCpADwKQ)
4. Canny Edge Detection: [Link](https://www.youtube.com/watch?time_continue=666&v=PtSgA19sC5g&feature=emb_title)
5. Gaussian and Laplacian Pyramid: [Link](https://www.cnblogs.com/sddai/p/10330756.html)
6. Opencv threshold: [Link](https://blog.csdn.net/on2way/article/details/46812121)
7. BERT by PyTorch: [Link](https://leemeng.tw/attack_on_bert_transfer_learning_in_nlp.html)
8. OpenCV教程: [Link](https://me.csdn.net/sunny2038)
9. IoU、GIoU、DIoU、CIoU: [Link](https://zhuanlan.zhihu.com/p/94799295)