Math 181 Miniproject 3: Texting Lesson.md --- Linear Approximation === <style> body { background-color: #eeeeee; } h1 { color: maroon; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> Hello Professor, I need help on the practice exam probelm 3. It asks: use linear approximation to estimate $\sqrt{9.3}$. Let $f(x)=\sqrt{x}$ and $x=9.$. </div></div> <div><div class="alert blue"> Well first, it is asking to find the linear approximation. What equation do we use that relates to linear approximation? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> The linear approximation equation is $$L(x) = f(a) + f'(a)(x-a)$$ </div></div> <div><div class="alert blue"> Correct! By understanding the formula, we can now have a visualization of the slope of the tangent line. So if you look at the graph at y=L(x) the linear function is able to tell you information of the graph at y=f(x). In other words, it is the equation of the tangent line to the graph of y=f(x). </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Ah I see, if I look at y=L(x) for a function, we can see the original function's value and the slope at the tangency. </div></div> <div><div class="alert blue"> Correct! </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Ok, so I understand the formula but how do we use the formula of linear appoximation? How do I apply it? </div></div> <div><div class="alert blue"> Well, theres a few different ways to go about this. In my opinion the first think you should think about is the forumla and what you know. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Ok, so I know $$L(x)=f(a)+f'(a)(x-a)$$ $$L(x)=f\left(\sqrt{9}\right)+f'\left(\sqrt{9}\right)\left(x-9\right)$$ Next, I know that $$f\left(\sqrt{9}\right)=3$$ </div></div> <div><div class="alert blue"> Right so now, you need to solve of $$f'\left(\sqrt{9}\right)$$ Do you remember how you could solve this? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Hmm, oh yes I use the limit definition. $$f'(x) = $\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}$$ </div></div> <div><div class="alert blue"> Correct! But it might be helpful for you to solve it with what was given to you in the question. Which was $f(x)=\sqrt{x}$. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Oh okay so it'll look like this. $$f'(\sqrt{x}) = \lim_{h \to 0}\frac{f(\sqrt{x+h})-f(\sqrt{x})}{h}$$ $$= \lim_{h \to 0}\frac{f(\sqrt{x+h})-f(\sqrt{x})}{h}\cdot\ \frac{\left(\sqrt{x+h}\ +\ \sqrt{x}\right)}{\left(\sqrt{x+h}+\sqrt{x}\right)}$$ $$ = \lim_{h \to 0}\frac{\left(x+h\right)-x}{h\sqrt{x+h}+\ \sqrt{x}}$$ $$ = \lim_{h \to 0}\frac{1}{\sqrt{x+h}+\ \sqrt{x}}$$ $$ = \frac{1}{\sqrt{x+0}+\ \sqrt{x}}$$ $$ = \frac{1}{2\sqrt{x}}$$ </div></div> <div><div class="alert blue"> Correct! I appreciate that you show all your work! So what would you do next? </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> $$L(x)=f\left(\sqrt{9}\right)+f'\left(\sqrt{9}\right)\left(x-9\right)$$ $$ = 3 + f'(\frac{1}{2\sqrt{9}})(x-9)$$ $$ = 3 + 1/6 (x-9)$$ </div></div> <div><div class="alert blue"> Yes! So now you have linear approximation in slope-point form. So we can use this formula $\sqrt{9.3}$ to approximate f(9.3) and L(9.3) </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Oh yea so it can help us estimate. $\sqrt{9.3} = f(9.3)$ $= L(9.3)$ $= 3 + 1/6 (9.3-9)$ $=3+1/6(.3)$ $=3.05$ </div></div> <div><img class="left"/><div class="alert gray"> I get it now! Thank you for helping me solve this! </div></div> <div><div class="alert blue"> Of course! I am glad this helped. </div><img class="right"/></div> ---