Math 181 Miniproject 3: Texting Lesson.md
---
Linear Approximation
===
<style>
body {
background-color: #eeeeee;
}
h1 {
color: maroon;
margin-left: 40px;
}
.gray {
margin-left: 50px ;
margin-right: 29%;
font-weight: 500;
color: #000000;
background-color: #cccccc;
border-color: #aaaaaa;
}
.blue {
display: inline-block;
margin-left: 29% ;
margin-right: 0%;
width: -webkit-calc(70% - 50px);
width: -moz-calc(70% - 50px);
width: calc(70% - 50px);
font-weight: 500;
color: #fff;
border-color: #336699;
background-color: #337799;
}
.left {
content:url("https://i.imgur.com/rUsxo7j.png");
width:50px;
border-radius: 50%;
float:left;
}
.right{
content:url("https://i.imgur.com/5ALcyl3.png"); width:50px;
border-radius: 50%;
display: inline-block;
vertical-align:top;
}
</style>
<div id="container" style=" padding: 6px;
color: #fff;
border-color: #336699;
background-color: #337799;
display: flex;
justify-content: space-between;
margin-bottom:3px;">
<div>
<i class="fa fa-envelope fa-2x"></i>
</div>
<div>
<i class="fa fa-camera fa-2x"></i>
</div>
<div>
<i class="fa fa-comments fa-2x"></i>
</div>
<div>
<i class="fa fa-address-card fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-phone fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-list-ul fa-2x" aria-hidden="true"></i>
</div>
<div>
<i class="fa fa-user-plus fa-2x" aria-hidden="true"></i>
</div>
</div>
<div><img class="left"/><div class="alert gray">
Hello Professor, I need help on the practice exam probelm 3. It asks: use linear approximation to estimate $\sqrt{9.3}$. Let $f(x)=\sqrt{x}$ and $x=9.$.
</div></div>
<div><div class="alert blue">
Well first, it is asking to find the linear approximation. What equation do we use that relates to linear approximation?
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
The linear approximation equation is $$L(x) = f(a) + f'(a)(x-a)$$
</div></div>
<div><div class="alert blue">
Correct! By understanding the formula, we can now have a visualization of the slope of the tangent line. So if you look at the graph at y=L(x) the linear function is able to tell you information of the graph at y=f(x). In other words, it is the equation of the tangent line to the graph of y=f(x).
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
Ah I see, if I look at y=L(x) for a function, we can see the original function's value and the slope at the tangency.
</div></div>
<div><div class="alert blue">
Correct!
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
Ok, so I understand the formula but how do we use the formula of linear appoximation? How do I apply it?
</div></div>
<div><div class="alert blue">
Well, theres a few different ways to go about this. In my opinion the first think you should think about is the forumla and what you know.
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
Ok, so I know
$$L(x)=f(a)+f'(a)(x-a)$$
$$L(x)=f\left(\sqrt{9}\right)+f'\left(\sqrt{9}\right)\left(x-9\right)$$
Next, I know that $$f\left(\sqrt{9}\right)=3$$
</div></div>
<div><div class="alert blue">
Right so now, you need to solve of $$f'\left(\sqrt{9}\right)$$ Do you remember how you could solve this?
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
Hmm, oh yes I use the limit definition.
$$f'(x) = $\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}$$
</div></div>
<div><div class="alert blue">
Correct! But it might be helpful for you to solve it with what was given to you in the question. Which was $f(x)=\sqrt{x}$.
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
Oh okay so it'll look like this.
$$f'(\sqrt{x}) = \lim_{h \to 0}\frac{f(\sqrt{x+h})-f(\sqrt{x})}{h}$$
$$= \lim_{h \to 0}\frac{f(\sqrt{x+h})-f(\sqrt{x})}{h}\cdot\ \frac{\left(\sqrt{x+h}\ +\ \sqrt{x}\right)}{\left(\sqrt{x+h}+\sqrt{x}\right)}$$
$$ = \lim_{h \to 0}\frac{\left(x+h\right)-x}{h\sqrt{x+h}+\ \sqrt{x}}$$
$$ = \lim_{h \to 0}\frac{1}{\sqrt{x+h}+\ \sqrt{x}}$$
$$ = \frac{1}{\sqrt{x+0}+\ \sqrt{x}}$$
$$ = \frac{1}{2\sqrt{x}}$$
</div></div>
<div><div class="alert blue">
Correct! I appreciate that you show all your work! So what would you do next?
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
$$L(x)=f\left(\sqrt{9}\right)+f'\left(\sqrt{9}\right)\left(x-9\right)$$
$$ = 3 + f'(\frac{1}{2\sqrt{9}})(x-9)$$
$$ = 3 + 1/6 (x-9)$$
</div></div>
<div><div class="alert blue">
Yes! So now you have linear approximation in slope-point form. So we can use this formula $\sqrt{9.3}$ to approximate f(9.3) and L(9.3)
</div><img class="right"/></div>
<div><img class="left"/><div class="alert gray">
Oh yea so it can help us estimate.
$\sqrt{9.3} = f(9.3)$
$= L(9.3)$
$= 3 + 1/6 (9.3-9)$
$=3+1/6(.3)$
$=3.05$
</div></div>
<div><img class="left"/><div class="alert gray">
I get it now! Thank you for helping me solve this!
</div></div>
<div><div class="alert blue">
Of course! I am glad this helped.
</div><img class="right"/></div>
---