# Python 101 筆記 **#1 np.random.normal()** ``` python= import numpy as np mean = 0 std = 0.1 y = np.random.normal(mean, std ,size = 10)#size預設=None(只有一個) ``` np.random.normal(mean,std,size): * mean:float 此概率分佈的均值(對應著整個分佈的中心centre) * std:float 此概率分佈的標準差(對應於分佈的寬度,scale越大越矮胖,scale越小,越瘦高) * size:int or tuple of ints 輸出的shape,預設為None,只輸出一個值 表示均值為mean,標準差為std的高斯隨機數(場). 即與高斯分佈(Gaussian Distribution)的概率密度函式(probability density function):(維基百科) https://en.wikipedia.org/wiki/Normal_distribution **#2 plt.hist()** ``` python= import matplotlib.pyplot as plt n, bins, patches = plt.hist(y, num_bins, density=1, rwidth=0.9, color='blue', alpha=0.5) ``` * y:直方圖的y值 * num_bins:多少個長方塊 * density:請設定等於1,符合機率理論(機率密度總和=1) * rwidth:每條長方塊的寬度 * color:顏色 * aplha:透明度 **#3 plt.plot()** ``` python= import matplotlib.pyplot as plt ...(略) plt.plot(bins, 1/(std * np.sqrt(2 * np.pi)) * np.exp( - (bins - mean)**2 / (2 * std**2)), linewidth=2, color='r') #畫出曲線圖 ``` plt.plot(x, y, linewidth=2, color='r'): * x:x軸的座標值 * y:函數 * linewidth:線條寬度 * color:顏色 **#4 data = pd.read_csv(csv_file)** ``` python= import pandas as pd csv_file = "https://raw.githubusercontent.com/jerrylin1121/tmp_data/master/total-confirmed-cases-of-covid-19-per-million-people.csv" data = pd.read_csv(csv_file) data.head(10)#顯示出前10筆資料 ``` **#5 sns_plot = sns.relplot(, , , )** ``` python= import seaborn as sns sns_plot = sns.relplot(x='Year', y='Total confirmed cases of COVID-19 per million people (cases per million)', kind='line', data=data) #會顯示信賴區間 ```