# Analysis :::info Let $f:E\to\mathbb{R}$ be Riemann integrable on $E\subseteq\mathbb{R}^n$. We use $\int_Ef\ d\mathbf{x}$ to represent the value of the integral. Let $F=(f_1, \cdots, f_n):E\to\mathbb{R}^n$ such that each component is integrable, we write $\int_EF\ d\mathbf{x}$ as a vector $$\int_EF\ d\mathbf{x}=\left(\int_Ef_1\ d\mathbf{x}, \cdots, \int_Ef_n\ d\mathbf{x}\right).$$ ::: ### ++**Coordinate System**++ Spherical Coordinate System: $\displaystyle\int_Ef\ d\mathbf{x}=\int_E f\ r^2\sin\theta\ dr\ d\theta\ d\varphi.$ ![image](https://hackmd.io/_uploads/BJ4-WHoQC.png =30%x) Cylindrical Coordinate System: $\displaystyle\int_Ef\ d\mathbf{x}=\int_E f\ \rho\ dz\ d\rho\ d\varphi.$ ![image](https://hackmd.io/_uploads/H1O3EBomR.png =30%x) ### ++**Integration over $k$-forms**++ Let $M\subseteq\mathbb{R}^3$ be an oriented $k$-dimensional manifold, where $k\le 3$. * A homeomorphism $\phi:U\subseteq\mathbb{R}^k\to M$ is called a **parametrization**. * $C^\infty(M)=\{f:M\to\mathbb{R}\ |\ f\circ\phi\in C^\infty\}$. Let $f\in C^\infty(M)$ and $\mathbf{f}=(f_1, f_2, f_3)$ where $f_i\in C^\infty(M)$ and set * $\nabla=(\frac{\partial}{dx_1}, \frac{\partial}{dx_2}, \frac{\partial}{dx_3})$ * $d\mathbf{x}^1=(dx_1, dx_2, dx_3)$ * $d\mathbf{x}^2=(dx_2dx_3, dx_3dx_1, dx_1dx_2)$ * $d\mathbf{x}^3=(dx_1dx_2dx_3)$ | | 0-form | 1-form | 2-form | 3-form | |:---------:|:-----------------------------:|:---------------------------------------------:|:--------------------------------------------:|:----------------------:| | $\omega$ | $f$ | $\mathbf{f}\cdot d\mathbf{x}^1$ | $\mathbf{f}\cdot d\mathbf{x}^2$ | $f\cdot d\mathbf{x}^3$ | | $d\omega$ | $\nabla f\cdot d\mathbf{x}^1$ | $(\nabla\times\mathbf{f})\cdot d\mathbf{x}^2$ | $(\nabla\cdot\mathbf{f})\cdot d\mathbf{x}^3$ | - | | $J$ | - | $\phi'$ | $\phi_{x_1}\times\phi_{x_2}$ | $\det D\phi\ (=1)$ | :::spoiler More info > We use the dot product instead of the summation notation. > Let $M\subseteq\mathbb{R}^n$ be an oriented $k$-dimensional manifold, where $k\le n$. > Given a parametrization $\phi:U\subseteq\mathbb{R}^k\to M$ of $M$. > * A **simple $k$-form** is just like $\omega=f\ d\mathbf{x}^I$, where $f\in C^\infty(M)$ and $d\mathbf{x}^I=dx^{n_1}dx^{n_2}\cdots dx^{n_k}$. > * The **derivative** of a simple $k$-form $f\ d\mathbf{x}^I$ is defined by $$d\omega=\sum_{i=1}^n\frac{\partial f}{\partial x^i}dx^id\mathbf{x}^I=\nabla f\cdot (dx^1, \cdots, dx^n)d\mathbf{x}^I.$$ > * The **integral** of a simple $k$-form $f\ d\mathbf{x}^I$ is defined by $$\int_M\omega=\pm\int_U (f\circ\phi)\frac{\partial(x^{n_1}, \cdots, x^{n_k})}{\partial(u^1, \cdots, u^k)}\ du^1\cdots du^k$$ where $\frac{\partial(x^{n_1}, \cdots, x^{n_k})}{\partial(u^1, \cdots, u^k)}$ is the Jacobian and the sign depend on the orientation of $M$. > * A **$k$-form** is a summation of simple $k$-forms. ::: Note that the identity is always a parameterization of a 3-manifold. * **The integral of a simple form** $\omega=\alpha\cdot d\mathbf{x}^k$ is defined by $$\int_M\omega=\int_U(\alpha\circ\phi)\cdot J\ d\mathbf{x},$$ where $\phi:U\subseteq\mathbb{R}^k\to M$ is a parametrization. * The integral of a 0-form $\omega=f$ is defined by $\int_M\omega=f(\phi(0))$. * **Stokes' Theorem**. $$\int_Md\omega=\int_{\partial M}\omega$$ where $\partial M$ is the boundary of $M$. # Classical Physics #### Notation: * $\gamma\subseteq\mathbb{R}^3$ be an oriented $1$-dimensional manifold. * $S\subseteq\mathbb{R}^3$ be an oriented $2$-dimensional manifold. * $V\subseteq\mathbb{R}^3$ be an oriented $3$-dimensional manifold. * $M\subseteq\mathbb{R}^n$ be an oriented $k$-dimensional manifold. * $I=[a, b]\subseteq\mathbb{R}$ be a time interval. * **Speed of Light** be a constant $c=299792458$. #### Definition: * **Scalar field** is a real-valued function $\mathbf{S}:M\subseteq\mathbb{R}^n\to\mathbb{R}$. * **Vector field** is a vector-valued function $\mathbf{F}:M\subseteq\mathbb{R}^n\to\mathbb{R}^m$. * **Work** of $\mathbf{F}$ on $\gamma$ is defined by $W_\mathbf{F}=\int_\gamma\mathbf{F}\cdot d\mathbf{x}^1$. * **Flux** of $\mathbf{F}$ on $S$ is defined by $\Phi_\mathbf{F}=\int_S\mathbf{F}\cdot d\mathbf{x}^2$. * **Potential** of $\mathbf{F}$ is a functon $\Psi$ such that $$\mathbf{F}\cdot d\mathbf{x}^{k+1}=d(\Psi\cdot d\mathbf{x}^k).$$ Particularly, * $\mathbf{F}$ is said to be **conservative** if there exists $\Psi\in C^\infty(M)$ such that $$-\mathbf{F}\cdot d\mathbf{x}^1=\nabla\Psi\cdot d\mathbf{x}^1=d\Psi.$$ * **Potential difference** of a conservative field $\mathbf{F}$ along $\gamma$ is defined by $$\Delta\Psi_\gamma=-W_\mathbf{F}=\int_\gamma\nabla\Psi\cdot d\mathbf{x}^1=\int_{\partial \gamma}\Psi=\Psi(r(b))-\Psi(r(a))$$ where $r:I\to\gamma$ is a parametrization and $-\mathbf{F}=\nabla\Psi$. ### ++**Time-Invariant System**++ * **Physical Constant** depend on different systems | Constant | Electric | Gravity | |:--------:|:--------------------:|:----------------------:| | $k$ | $c^2\times 10^{-7}$ | $-6.6743\times10^{-11}$ | * **Density** is a scalar field $\rho:V\to\mathbb{R}$. * **Quantity** of $\rho$ at time $t$ is defined by $Q=\int_V\rho\cdot d\mathbf{x}^3$. :::info The **gradient field** generated by density $\rho$ is defined by $$\mathbf{G}:V\subseteq\mathbb{R}^3\to\mathbb{R}^3:\mathbf{a}\mapsto k\int_V\rho(\mathbf{x})\cdot\frac{\mathbf{x}-\mathbf{a}}{\|\mathbf{x}-\mathbf{a}\|^3}d\mathbf{x}.$$ ::: Every gradient field $\mathbf{G}$ is conservative and its potential can be given by $$\Psi:V\subseteq\mathbb{R}^3\to\mathbb{R}:\mathbf{a}\mapsto k\int_V\frac{\rho(\mathbf{x})}{\|\mathbf{x}-\mathbf{a}\|}d\mathbf{x}.$$ :::spoiler Proof > Fixed $\mathbf{x}\in V$, then $\nabla\frac{1}{\|\mathbf{x}-\mathbf{a}\|}=-\frac{\mathbf{x}-\mathbf{a}}{\|\mathbf{x}-\mathbf{a}\|^3}$. > It follows that $$\nabla\Psi(\mathbf{a})=k\int_V\nabla\left(\frac{\rho(\mathbf{x})}{\|\mathbf{x}-\mathbf{a}\|}\right)d\mathbf{x}=-\mathbf{G}(\mathbf{a}).$$ Note that $\nabla$ only acts on variable $\mathbf{a}$. ::: :::spoiler Example 1 > **Cylindrical Coordinate System** > Given $V=[0, \varepsilon]\times[0, 2\pi]\times[z_1, z_2]$ be a line with $\varepsilon\to 0$. > Let $\mathbf{a}=(0, 0, c)\in\mathbb{R}^3$ and $\mathbf{x}=(r, \phi, z)\in V$, then $\mathbf{x}-\mathbf{a}\to(0, 0, z-c)$. > Suppose that $\rho$ is a constant, then $Q=\int_V\rho\cdot d\mathbf{x}^3=(z_2-z_1)\varepsilon^2\pi$. > In conclusion, $$\begin{matrix}\mathbf{G}(\mathbf{a}) &=& \displaystyle k\rho\int_V\frac{\mathbf{x}-\mathbf{a}}{\|\mathbf{x}-\mathbf{a}\|^3}d\mathbf{x} \\&\approx& \displaystyle k\pi\varepsilon^2\rho\int_{z_1}^{z_2}\frac{(0, 0, z-c)}{(z-c)^3}\ dz \\&=& k\pi\varepsilon^2\rho\left(0, 0, \frac{1}{z_1-c}-\frac{1}{z_2-c}\right) \\&=& \left(0, 0, \frac{kQ}{(z_1-c)(z_2-c)}\right).\end{matrix}$$ ::: :::spoiler Example 2 > **Cylindrical Coordinate System** > Given $V=[0, \varepsilon]\times[0, 2\pi]\times\mathbb{R}$ be a line with $\varepsilon\to 0$. > Let $\mathbf{a}=(a, 0, 0)\in\mathbb{R}^3$ and $\mathbf{x}=(r, \phi, z)\in V$, then $\mathbf{x}-\mathbf{a}\to(a, 0, z)$. > Suppose that $\rho$ is a constant, then $$\begin{matrix}\mathbf{G}(\mathbf{a}) &=& \displaystyle k\rho\int_V\frac{\mathbf{x}-\mathbf{a}}{\|\mathbf{x}-\mathbf{a}\|^3}d\mathbf{x} \\&\approx& \displaystyle k\pi\varepsilon^2\rho\int^\infty_{-\infty}\frac{(a, 0, z)}{(a^2+z^2)^{3/2}}\ dz \\&=& \left(\frac{2k\pi\varepsilon^2\rho}{a}, 0, 0\right).\end{matrix}$$ > If we write $\lambda=\pi\varepsilon^2\rho$ as linear density distribution, then $$\mathbf{G}(\mathbf{a})=\left(\frac{2k\lambda}{a}, 0, 0\right).$$ ::: ### * **Velocity field** is a vector field $\mathbf{v}:V\to\mathbb{R}^3$. * **Flux density** is a vector field $\mathbf{J}=\rho\mathbf{v}$. :::info The **curl field** generated by flux density $\mathbf{J}$ is defined by $$\mathbf{C}:V\subseteq\mathbb{R}^3\to\mathbb{R}^3:\mathbf{a}\mapsto \frac{k}{c^2}\int_V\mathbf{J}(\mathbf{x})\times\frac{\mathbf{x}-\mathbf{a}}{\|\mathbf{x}-\mathbf{a}\|^3}d\mathbf{x}.$$ ::: Similarly, the potenital of $\mathbf{C}$ can be given by $$\Psi:V\subseteq\mathbb{R}^3\to\mathbb{R}:\mathbf{a}\mapsto \frac{k}{c^2}\int_V\frac{\mathbf{J}(\mathbf{x})}{\|\mathbf{x}-\mathbf{a}\|}d\mathbf{x}.$$ In this case, $\nabla\times\Psi=\mathbf{C}$. ### ++**Time-variant System**++ Let $\mathbf{F}:M\to\mathbb{R}^m$ be a vector field. We extend $\mathbf{F}$ to be a **time-variant field** $\overline{\mathbf{F}}:M\times I\to\mathbb{R}^m$. Whenever $t\in I$, we set $$\mathbf{F}_t:M\to\mathbb{R}^m:\mathbf{a}\mapsto\overline{\mathbf{F}}(\mathbf{a}, t)$$ or just write it as $\mathbf{F}$ if there is no confusion. The $\nabla$ operator here does not act on the time dimension. **Field Equations**. Let $\partial V=S$ be a closed surface and $\partial S=\gamma$ be a closed curve. | | 2-3-form | 1-2-form | | -------- | -------- | -------- | | gradient | $\begin{matrix}\nabla\cdot\mathbf{G}&=&4\pi k\rho\\\int_S\mathbf{G}\cdot d\mathbf{x}^2&=&4\pi kQ\end{matrix}$ | $\begin{matrix}\nabla\times\mathbf{G}&=&-\frac{\partial\mathbf{C}}{\partial t}\\\int_\gamma\mathbf{G}\cdot d\mathbf{x}^1&=&-\frac{d\Phi_\mathbf{C}}{dt}\end{matrix}$ | | curl | $\begin{matrix}\nabla\cdot\mathbf{C}&=&0\\\int_S\mathbf{C}\cdot d\mathbf{x}^2&=&0\end{matrix}$ | $\begin{matrix}\nabla\times\mathbf{C}&=&\frac{1}{c^2}(\frac{\partial\mathbf{G}}{\partial t}+4\pi k\mathbf{J})\\\int_\gamma\mathbf{C}\cdot d\mathbf{x}^1&=&\frac{1}{c^2}(\frac{d\Phi_\mathbf{G}}{dt}+4\pi k\Phi_\mathbf{J})\end{matrix}$ | If $\frac{\partial\mathbf{C}}{\partial t}\ne 0$ or $\frac{\partial\mathbf{G}}{\partial t}\ne 0$, then the potential of $\mathbf{G}$ and $\mathbf{C}$ are **not exists**. **Continuity Equation.** $$\frac{\partial\rho}{\partial t}+\nabla\cdot\mathbf{J}=0.$$ Fixed $t\in I$, then by the continuity equation, $$\Phi_\mathbf{J}=\int_{\partial V}\mathbf{J}\cdot d\mathbf{x}^2=\int_V(\nabla\cdot\mathbf{J})\cdot d\mathbf{x}^3=-\int_V\frac{\partial\rho}{\partial t}\cdot d\mathbf{x}^3=-\frac{d}{dt}\int_V\rho\cdot d\mathbf{x}^3,$$ which is the **conservation law**. **Linearly Polarized Waves.** Set * $\rho=\mathbf{J}=0$ and $\omega\in\mathbb{R}$. * $f:\mathbb{R}\times I\to\mathbb{R}$ of class $C^2$ Then $$\mathbf{G}=\left(0, f\left(\frac{\omega}{c}x_1-\omega t\right), 0\right),\quad \mathbf{C}=\left(0, 0, \frac{1}{c}f\left(\frac{\omega}{c}x_1-\omega t\right)\right)$$ is a solution for field equations. :::spoiler More info > Set $\mathbf{G}=(G_1, G_2, G_3)$ and $\mathbf{C}=(C_1, C_2, C_3)$ of class $C^2$. > Suupose that $\mathbf{G}$ and $\mathbf{C}$ are invariant along $x_2$-axis and $x_3$-axis. > Then $$\nabla\times\mathbf{G}=\left(0,0,\frac{\partial G_2}{\partial x_1}\right)=-\frac{\partial\mathbf{C}}{\partial t},\quad\nabla\times\mathbf{C}=\left(0,-\frac{\partial C_3}{\partial x_1}, 0\right)=\frac{1}{c^2}\frac{\partial\mathbf{G}}{\partial t}.$$ It follows that $0=\frac{\partial G_1}{\partial t}=\frac{\partial G_3}{\partial t}=\frac{\partial C_1}{\partial t}=\frac{\partial C_2}{\partial t}$. > Since $G_2$ and $C_3$ have continuous second partial derivatives, we have $$\frac{\partial^2 G_2}{\partial x_1^2}=\frac{\partial}{\partial t}\frac{\partial C_3}{\partial x_1}=\frac{1}{c^2}\frac{\partial^2 G_2}{\partial t^2},\quad\frac{\partial^2 C_3}{\partial x_1^2}=\frac{1}{c^2}\frac{\partial^2 C_3}{\partial t^2}.$$ ::: ### ++**Related Concepts**++ Suppose that $(V, \gamma, \pi:V\to \gamma, S)$ is a **fiber bundle**. * $\pi^{-1}(p)$ is homeomorphic to $S$ and is called the **fiber** of $p\in\gamma$. :::spoiler More info Imagine that $V$ is a conductor, $\gamma$ is the central axis of $V$, and $S$ is the section of $V$: * The **bundle projection** $\pi:V\to\gamma$ is a continuous surjection. * The **base space** $\gamma$ is connected. * For all $x\in\gamma$, * there is an open neighborhood $U_x$ of $x$ in $\gamma$ * there is a homeomorphism $\phi_x:\pi^{-1}(U_x)\to U_x\times S$ * $p_x:U_x\times S\to U_x:(y, z)\to y$ is the projection. * $\pi=p_x\circ\phi_x$ on $U_x\times S$. ::: ### If $\mathbf{J}$ is a constant on $V$ and $S_0$ be a surface, then $$L=\frac{\Phi_\mathbf{C}\text{ on }S_0}{\Phi_\mathbf{J}}=\frac{\int_{S_0}\mathbf{C}\cdot d\mathbf{x}^2}{\int_S\mathbf{J}\cdot d\mathbf{x}^2}$$ is called the **inductance** on $S_0$. * If $\gamma_0=\partial S_0$, then $W_\mathbf{G}=-\frac{d\Phi_{\mathbf{C}}\text{ on }S_0}{dt}=-L\frac{d\Phi_{\mathbf{J}}}{dt}$ by the field equation. * If $V\approx\partial S_1$ for some surface $S_1$, then $L$ is called the mutual-inductance. * If $V\approx\partial S_0$, then $L$ is called the self-inductance. Suppose that $\mathbf{G}$ and $\mathbf{C}$ on $V$ are time-invariant. Set $\Delta\Psi_\gamma$ to be the potential difference of $\mathbf{G}$. * **Capacitance** is defined by $C=\int_V\rho\cdot d\mathbf{x}^3/\Delta\Psi_\gamma=Q/\Delta\Psi_\gamma$. * If $\Phi_\mathbf{J}$ is a constant on all fiber $\pi^{-1}(p)$, then $R=\Delta\Psi_\gamma/\Phi_\mathbf{J}$ is a constant called **resistance** and $V$ is said to be **Ohmic**. Let $p\in V$ be a point with a poined quantity $q\in\mathbb{R}$. * **Poynting vector** is defined by $\frac{c^2}{4\pi k}\mathbf{G}\times\mathbf{C}$. * **Potential energy** of $p$ is defined by $\Delta U=q\Delta\Psi_\gamma$. :::info Let $\mathbf{G}$ be a gradient field, $\mathbf{C}$ be a curl field, $\mathbf{v}$ be a velocity field. The **Force** on $p$ is given by $$q(\mathbf{G}+\mathbf{v}\times\mathbf{C})$$ ::: # Mechanics ### Linear System * **Mass Density** $\rho$ in *Linear Systems* is generated by **gracity**. * **Mass** $m$ is the quantity in linear system. * **Gravitational field** $g$ is the field generated by a mass density. ### Rotation System * The density in *Rotation Systems* is defined by $\rho r^2$, where $\rho$ is the mass density and $r$ is the distance from the axis of rotation. * **Inertia** $I$ is the quantity in rotation system. Let $q$ be the quantity in a system. * **Momentum** is defined by $p=\|q\mathbf{v}\|$. * **Kinetic Energy** is is defined by $K=\frac{1}{2}q\|\mathbf{v}\|^2$. # Electricity Suppose that $(V, \gamma, \pi:V\to\gamma, S)$ is a Ohmic fiber bundle. | | Series | Parallel | |:----------:|:----------------:|:----------------:| | Definition | $\gamma=\bigcup_i\gamma_i$ | $S=\bigcup_iS_i$ | | $W_\mathbf{G}$ | $\sum_iW_\mathbf{G}\text{ on }\gamma_i$ | $W_\mathbf{G}$ | | $\Phi_\mathbf{J}$ | $\Phi_\mathbf{J}$ | $\sum_i\Phi_\mathbf{J}\text{ on }S_i$ | | Capacitance | $\frac{1}{C}=\sum_i\frac{1}{C_i}$ | $C=\sum_iC_i$ | | Resistance | $R=\sum_i R_i$ | $\frac{1}{R}=\sum_i\frac{1}{R_i}$ | | Inductance on $S_0$ | $L=\sum_i L_i$ | $\frac{1}{L}=\sum_i\frac{1}{L_i}$ | ### RC Circuits 1. $\gamma=\gamma_0\cup \gamma_1\cup \gamma_2$ is a closed curve. 2. $\gamma_0$ has a constant work $W$ when charging. 3. $\gamma_1$ has a constant caparacitance $C$. 4. $\gamma_2$ has a constant resistance $R$. 5. Ignore $\frac{d\Phi_\mathbf{G}}{dt}$ and $\frac{d\Phi_\mathbf{C}}{dt}$. Let $q$ be the quantity on $\gamma_1$. | | Charging | Discharging | |:--------------------------:| -------- | ----------- | | When $t=0$ | $q=0$ | $q=Q$ | | $q$ | $WC(1-e^{-t/RC})$ | $Qe^{-t/RC}$ | | $\Phi_\mathbf{J}=\frac{dq}{dt}$ | $\frac{W}{R}e^{-t/RC}$ | $-\frac{Q}{RC}e^{-t/RC}$ | :::spoiler Proof > **Charging** > By continuity equation, $\Phi_\mathbf{J}=\frac{dq}{dt}$ and hence $\Delta\Psi_{\gamma_2}=R\Phi_\mathbf{J}=R\frac{dq}{dt}$. > Since $\gamma$ is closed, $0=W_\mathbf{G}=W-\frac{q}{C}-R\frac{dq}{dt}$. > Then $\frac{dq}{dt}=\frac{W}{R}-\frac{q}{RC}$ and $q=c_1e^{-t/RC}+WC$ for some $c_1$. > Since $q=0$ when $t=0$, we conclude that $$q=WC(1-e^{-t/RC}).$$ > **Disharging** > Note that $0=W_\mathbf{G}=-\frac{q}{C}-R\frac{dq}{dt}$. > Then $q=c_1e^{-t/RC}$ for some $c_1$. > Since $q=Q$ when $t=0$, $$q=Qe^{-t/RC}.$$ ::: ### RLC Series Circuits 1. $\gamma=\gamma_0\cup\gamma_1\cup \gamma_2$ is a closed curve. 2. $\gamma_0$ has a constant caparacitance $C$. 3. $\gamma_1$ is closed and has a constant inductance $L$. 4. $\gamma_2$ has a constant resistance $R$. 5. Ignore $\frac{d\Phi_\mathbf{G}}{dt}$ and $\frac{d\Phi_\mathbf{C}}{dt}$. Let $q$ be the quantity $q$ on $\gamma_0$. Suppose that $q=Q$ and $\Phi_\mathbf{J}=0$ when $t=0$. If $R^2-4L/C<0$, then $$q=Qe^{\alpha t}\cos\beta t$$ where $\alpha=\frac{-R}{2L}$ and $\beta=\frac{\sqrt{4L/C-R^2}}{2L}$. :::spoiler Proof > Since $\gamma_1$ is closed, $W_{\mathbf{G}_1}=-L\frac{d\Phi_\mathbf{J}}{dt}=-L\frac{d^2q}{dt^2}$. > Since $\gamma$ is closed, $0=W_\mathbf{G}=-\frac{q}{C}-L\frac{d^2q}{dt^2}-R\frac{dq}{dt}$. > Since $\alpha\pm i\beta$ are roots of $Lx^2+Rx+\frac{1}{C}$, $$q=c_1e^{\alpha t}\cos\beta t+c_2e^{\alpha t}\sin\beta t$$ for some $c_1$ and $c_2$. > Since $q=Q$ and $\Phi_\mathbf{J}=\frac{dq}{dt}=0$ when $t=0$, we have $c_1=Q$ and $c_2=0$. ::: <!-- 極化、電功率沒寫,我還不知道電功率怎麼證-->