###### tags: `math` # ==命題邏輯 propositional logic== >aka語句邏輯 (sentential logic) :::warning Proposittion命題 >非對即錯 -> A true or false statement ::: ### <font color="#0F76D0 ">**Compound/complex Proposition 合句/複合句**</font> :::info 優先規則:¬高於∧,∧高於∨,∨高於→,→高於↔ ::: #### 1. Negation非 ¬ (¬p) | p | ¬p | |:---:|:---:| | T | F | | F | T | #### 2. Conjunction與 ∧ (p∧q) #### 3. Disjunction或 ∨ (p∨q) | p | q | p∧q | p∨q | |:---:|:---:|:---:|:---:| | T | T | T | T | | T | F | F | T | | F | F | F | F | #### 4. Implication條件 → (p→q) >if p, then q(p為假設,q為結果) #### 5. Biconditional雙條件 ↔ (p↔q) >p if and only if q(只要) | p | q | p→q | p↔q | |:---:|:---:|:---:|:---:| | T | T | T | T | | T | F | F | F | | F | T | T | F | | F | F | T | T | ### <font color="#0F76D0 ">**Conditional statements 條件陳述**</font> >implycation : p->q #### 1. converse逆命題 : q->p #### 2. contrapositive逆否命題 : ¬q->¬p #### 3. inverse否命題 : ¬p->¬q ### <font color="#0F76D0 ">**Equivalent propositions 等效命題**</font> >Tow propositions are *equivalent* if they always have the same truth value ### <font color="#0F76D0 ">**Non-equivalence 不等價**</font> >用真值表(true table)表示命題(implication)的反轉和倒數都不等同於命題 # ==Application 應用== ### <font color="#0F76D0 ">**logic circuits 邏輯電路**</font> * 0 represents **False** * 1 represents **True** * 如果變量的值爲true或false,則該變量稱爲布爾變量(Boolean variable) * three basic circuits(gates) - the inverter(the NOT Gate) -> negation  - the OR gate -> disjunction  - the AND gate -> conjunction  ### <font color="#0F76D0 ">**consistent system specification**</font> consistent : 有解的 > 有點像解方程式,帶入T或F,若句子皆成立便為 specifications consistent # ==謂詞邏輯Predicate Logic== >謂詞 -> 用來描述物與物之間關係的詞項 ### <font color="#0F76D0 ">**Introducing**</font> * variables(主體) : x, y, z * predicates(描述) : P(x), M(x) * quantifiers(範圍) : the extent to which a predicate is true ->**propositional function** P at x : P(x) # ==Propositional Equivalences命題等價== ### <font color="#0F76D0 ">**Logical status 邏輯狀態**</font> #### 1. tautology恆真句 >所有真值賦與下都為T : p∨¬p #### 2. inconsistent/contradictory sentence不一致句 >所有真值賦與下都為F : p∧¬p #### 3. contingent sentence適然句 >不為恆真句&&不一致句的剩下句子 : p ### <font color="#0F76D0 ">**Logical equivalence 邏輯等價**</font> * logically equivalent if p↔q is a tautology(恆真句) > write as p⇔q || p≡q * compound proposition : ### <font color="#0F76D0 ">**De Morgan's laws 德摩根定律**</font> * key logical equivalences - **identity laws** : p∧T ≡ p, p∨F ≡ p - **domination laws** : p∨T ≡ T, p∧F ≡ F - **idempotent laws** : p∨p ≡ p, p∧p ≡ p - **double negation laws** : ¬(¬p) ≡ p - **negation laws** : p∨¬p ≡ T, p∧¬p ≡ F * key logical equivalences(cont) - **commutative laws** : - **associative laws** : - **distributive laws** : - **absorption laws** : ### <font color="#0F76D0 ">**Propositional satisfiability 命題可滿足性**</font>
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up