# 2023.02.22 TIGP-C2 course: Convolutional Neural Networks, Recurrent Neural Networks > Instructor: Prof. Che Lin \<chelin@ntu.edu.tw\> > TA: Yi-Hsien Hsieh \<cloudinff7@gmail.com\>, Le-Yin Hsu \<leyin2030@gmail.com\> ## Pre-class Readings & Videos * **Note that there will be a quiz about the pre-class materials at the beginning of the class** * This quiz consists of three questions and will take about ten minutes via google form * This quiz accounts for 5% of this week's score * Let's have a brief overview of deep learning first * Coursera: *[Feed-Forward Neural Networks](https://pt.coursera.org/lecture/machine-learning-applications/feed-forward-neural-networks-Gy5JW)* * **Convolutional Neural Networks (CNN)** * Stanford University Lecture Collection | *[Convolutional Neural Networks](https://www.youtube.com/watch?v=bNb2fEVKeEo)* | [slide](https://drive.google.com/file/d/1SZXu0tkvnLI2eQ1MeVScGRVi-ofNFemE/view?usp=sharing) * (Supplementary) *[The history of CNN for visual recognition](https://www.youtube.com/watch?v=vT1JzLTH4G4)* <!-- * *[Deep Learning](https://www.deeplearningbook.org/)* * Chapter 9.2 (Motivation) * Chapter 9.3 (Pooling) * Chapter 9.7 (Data Types) * *[Coursera: Convolutional Settings - Padding and Stride](https://www.coursera.org/lecture/deep-learning-reinforcement-learning/convolutional-settings-padding-and-stride-YUl5F)* * *[Coursera: CNN Example](https://www.coursera.org/lecture/convolutional-neural-networks/cnn-example-uRYL1)* --> * **Recurrent Neural Networks (RNN)** * [AIIM](https://nol.ntu.edu.tw/nol/coursesearch/print_table.php?course_id=942%20U0780&class=&dpt_code=9450&ser_no=72403&semester=111-2) week 10: *[RNN basics (01:44:25-)](https://youtu.be/EQCVFQ8s-ME)* | [slide](https://drive.google.com/file/d/1VTZkPmf2cMPuiEbBvhdBnD3NzqwPAPv3/view?usp=share_link) * [AIIM](https://nol.ntu.edu.tw/nol/coursesearch/print_table.php?course_id=942%20U0780&class=&dpt_code=9450&ser_no=72403&semester=111-2) week 11: *[Gated models (01:07:00-01:37:00)](https://youtu.be/XOmFGeB1Byc)* | [slide](https://drive.google.com/file/d/18MnvwsqDKmSOEVug-7N4Z--8teNNzA_J/view?usp=share_link) ## In-class Discussion * **For each student, please prepare at least one question about CNN & RNN, respectively** * CNN * Questions from students * Case study: DTI prediction * More advanced models for image data * RNN * Questions from students * Can we replace the recurrent operation? -> the *Transformer* * More advanced models for sequential data ## Homework * [TIGP_C2_course_230222_HW.pdf](https://drive.google.com/file/d/1t5dx2bdRlBTJISkIxSfW5aENoQy4H5C0/view?usp=share_link) * (Important) [Grading policy](https://docs.google.com/spreadsheets/d/1ihyhLQbDy53FL-Bn90t-55F1-c3BNwq0f9svlTt8QEo/edit?usp=sharing)