HOMEWORK SORT CODE
===
``` python
import random
import time
import matplotlib.pyplot as plt
# Heap Sort
def heapify(arr, n, i):
largest = i
l = 2 * i + 1
r = 2 * i + 2
if l < n and arr[l] > arr[largest]:
largest = l
if r < n and arr[r] > arr[largest]:
largest = r
if largest != i:
arr[i], arr[largest] = arr[largest], arr[i]
heapify(arr, n, largest)
def heap_sort(arr):
n = len(arr)
for i in range(n//2 - 1, -1, -1):
heapify(arr, n, i)
for i in range(n-1, 0, -1):
arr[i], arr[0] = arr[0], arr[i]
heapify(arr, i, 0)
# Merge Sort
def merge_sort(arr):
if len(arr) <= 1:
return arr
mid = len(arr) // 2
left = merge_sort(arr[:mid])
right = merge_sort(arr[mid:])
return merge(left, right)
def merge(left, right):
result = []
i = j = 0
while i < len(left) and j < len(right):
if left[i] < right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
return result
# Quick Sort
def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quick_sort(left) + middle + quick_sort(right)
# Shell Sort
def shell_sort(arr):
gap = len(arr) // 2
while gap > 0:
for i in range(gap, len(arr)):
temp = arr[i]
j = i
while j >= gap and arr[j - gap] > temp:
arr[j] = arr[j - gap]
j -= gap
arr[j] = temp
gap //= 2
return arr
# Timing and plotting
sizes = [50000, 100000, 200000, 300000, 400000, 500000, 1000000]
heap_sort_times = []
merge_sort_times = []
quick_sort_times = []
shell_sort_times = []
for size in sizes:
data = [random.randint(1, size) for _ in range(size)]
start_time = time.time()
heap_sort(data.copy())
heap_sort_times.append(time.time() - start_time)
start_time = time.time()
merge_sort(data.copy())
merge_sort_times.append(time.time() - start_time)
start_time = time.time()
quick_sort(data.copy())
quick_sort_times.append(time.time() - start_time)
start_time = time.time
shell_sort(data.copy())
shell_sort_times.append(time.time() - start_time)
plt.figure(figsize=(12, 6))
plt.plot(sizes, heap_sort_times, marker='o', label='Heap Sort')
plt.plot(sizes, merge_sort_times, marker='s', label='Merge Sort')
plt.plot(sizes, quick_sort_times, marker='^', label='Quick Sort')
plt.plot(sizes, shell_sort_times, marker='D', label='Shell Sort')
plt.xlabel('Input size')
plt.ylabel('Time (seconds)')
plt.title('Time Complexity Comparison of Sorting Algorithms')
plt.legend()
plt.grid(True)
plt.show()
#This code compares the time complexity of the four sorting algorithms
# (Heap Sort, Merge Sort, Quick Sort, and Shell Sort) using different input sizes (50,000 to 1,000,000) and plots the results using matplotlib.
# The graph shows the time taken for each algorithm to sort the random lists of the specified sizes.
```
