###### tags: `課程筆記`
# 訊號與系統 Signal and System
> 是指對訊號表示、轉換、運算等進行處理的過程,就是要把記錄在某種媒體上的訊號進行處理,以便抽取出有用資訊的過程,它是對訊號進行提取、轉換、分析、綜合等處理過程的統稱。
[TOC]
- <span style="background-color: #e2f8f0; display: block; padding: 2% 2% 0.5% 2%; border-radius: 15px;"></span>
- <span style="background-color: #c8d8df; display: block; padding: 2% 2% 0.5% 2%; border-radius: 15px;"></span>
- <span style="background-color: #ffd7c1; display: block; padding: 2% 2% 0.5% 2%; border-radius: 15px;"></span>
## 1. Basic Concepts
### 1.3 Classifications of Signals
- Continuous vs Discrete
- continuous time signal $x(t)$
- 
- discrete time signal $x[n]$
- 在特定時間上才有值,通常都為固定在 continuous-time 做 signal sampling 得出
- signal is defined at particular instants(立即) of time
- 值仍是 continuous
- 需要做 quantization 完才會是 discrete signal 表值與時間皆為 discrete
- 
- discrete time 表示法
- $x[k] = x[kT]$
- $x[k]$ 表第 k 個取樣
- $x[kT]$ 表第 kT 時間取樣
- $x[kT]$ 的表示法比較好
- 可以直接看出時間點
- 未來也可以與其他數據結合搭配,所以時間單位再結合時,也需要校正
- Periodic and Nonperiodic Signal
- periodic continuous $x(t) = x(t+nT)$
- 
- periodic discrete $x[n] = x[n+N]$
- 
- <span style="background-color: #e2f8f0; display: block; padding: 2% 2% 0.5% 2%; border-radius: 15px;">【補充】Euler’s Identities</span>
- $e^{j\theta} = cos\theta + jsin\theta$
- $e^{-j\theta} = cos\theta - jsin\theta$
- 
- 
- An analog signal vs A digital signal
- An analog is a continuous time signal in which the variation with time is analogous (or proportional) 時間與值都是連續的
- is a discrete time signal that can have a **finite number** of values (usually binary).時間與值都不是連續的
- 需要 sampling and quantization
- Energy vs Power Signals
- 
- A signal $x(t)$ or $x[n]$ is an **energy signal** if and only if `代E公式會介於0到無窮大` and `代P公式會等於 0`
- A signal $x(t)$ or $x[n]$ is a **power signal** if and only if `代P公式會介於0到無窮大` and`代E公式會等於無窮大`
- <span style="background-color: #ffd7c1; display: block; padding: 2% 2% 0.5% 2%; border-radius: 15px;">所以當題目給一個 $x(t)$ 或是 $x[n]$ 時,就直接帶 $E$ 或 $P$ 的公式,看哪一個會介於0到無窮大之間</span>
- Even vs Odd smmetry
- even:$x(t) = x(-t)$
- odd:$x(t) = -x(-t)$
- 每一個 signal 都可以被分為 even part 跟 odd part
- $x(t) = x_e(t) + x_o(t)$
- $x_e(t) = \frac{1}{2}[x(t) + x(-t)]$(把odd part 部分給消掉)
- $x_o(t) = \frac{1}{2}[x(t) - x(-t)]$(把even part 部分給消掉)
### 1.4 Basic continuous-time signals
- **Unit impulse function(delta function)**
- 
- $\int_{0-}^{0+} \delta(t) \,dt = 1$
- sampling
- 
- **Unit step function**
- 
- **Unit ramp function**
- 
- <span style="background-color: #c8d8df; display: block; padding: 2% 2% 0.5% 2%; border-radius: 15px;">3 種函數關係</span>
- $r(t)$ 微分變 $u(t)$, $u(t)$ 微分變 $\delta(t)$
- $\delta(t)$ 積分變 $u(t)$, $u(t)$ 積分變 $r(t)$
- 其他延伸的 function
- <span style="background-color: #e2f8f0; display: block; padding: 2% 2% 0.5% 2%; border-radius: 15px;">**Rectangular Pulse Function**</span>
- **Triangular Pulse Function**
- 
### 1.5 Basic discrete-time signals
- **Unit impulse sequence**
- 
- **Unit step sequence**
- 
- **Unit ramp sequence**
- 
- 三者相對關係
- 
- 
- 其他函數圖形
- **Sinusoidal sequence**
- 
- **Exponential Sequence**
- $x[n] = Ae^{-anT} = A\alpha^n, \alpha = e^{-aT}$
- 
### 1.6 Basic operations on signals
- **Time Reversal**
- (此圖有誤)
- **Time Scaling**
- 
- **Time Shifting**
- 
- **Amplitude Transformations**
- 
- 
### 1.7 Classification of systems
- ***Continuous Time and Discrete Time Systems***
- 
- ***Causal and Noncausal Systems***
- A causal system is one whose present response does **not depend on the future values** of the input
- ***Linear and Nonlinear Systems***
- Homogeneity + Additivity
- 
- ***Time Varying and Time Invariant Systems***
- vary:to change or cause something to change in amount or level, especially from one occasion to another
- 
- time-invariant
- 
- time-varying
- 
- ***Systems with and without Memory***
- When the output of a system **depends on the past or future input**, the system is said to have a memory.
## 2. Convolution
- [But what is a convolution?](https://www.youtube.com/watch?v=KuXjwB4LzSA)
### 2.2 Impulse response
> The impulse response to an LTI (linear, time invariant) system is **`the output of the system to a unit impulse function`**.
- Impulse response(green part)
- 
### 2.3 Convolution integral
- The convolution of two signals $x(t)$ and $h(t)$ is usually written in terms of the operator $*$ as
- 
- <span style="background-color: #ffd7c1; display: block; padding: 2% 2% 0.5% 2%; border-radius: 15px;">我們 input signal $x(t)$ 與 impulse function $\delta(t)$,經過 LTI 系統的 transform,我們可以得到一個 impulse response $h(t)$,接著 $x(t)$ 再與 $h(t)$ 做 convolution 後,就可以得到 output $y(t)$</span>
- 若 $x(t) = 0$ for $t < 0$, 且 the system is causal, $h(t) = 0$ for $t < 0$(此處的 $\tau$ 為變數)
- 則
- 或是也可寫成 $y(t) = x(t)*h(t) = \int_{0}^{t}x(t-\tau)h(\tau)d\tau$
### 2.4 Graphical convolution
- 使用到前方提過的函數技巧

- 需要分段討論的範例
- 
- 根據定義可列
- 
### 2.5 Block diagram representation for continuous

### 2.6 Discrete-time convolution
- 定義
- `2.2、2.3 的離散版本`
- 
- **範例** Find $y[n] = x[n]*h[n]$ 
- **`法一分析`** 
- **`法二圖解`** 
- <span style="background-color: #e2f8f0; display: block; padding: 2% 2% 0.5% 2%; border-radius: 15px;">意義上為,將 $h(\tau)$ 先做 mirror(對y軸對稱),再分別向右平移 $0\sim t$、每次都與 $x(\tau)$ 相乘,最後再合成。
</span>
- 推廣在 $matlab$ 的運算方式
### 2.7 Block diagram realization for discrete

- **範例** Let $x[n] = \{3, 0, 2, 6\}$ and $y[n] = \{6, 12, 25, 20, 38, 42\}$. Find $h[n]$
- 法一長除法:
- 法二遞迴:
## 3. The Laplace Transform
### 3.1 Introduction
- Laplace Transform 是將 linear system 轉換為 **`frequency-domain`** 的表達方式
- 能夠將常微分方程式(ordinary differential equations)轉為代數方程(algebra equations),以利於運算
- 讓 convolution 成為簡單的乘法
- 在 continuous-time LTI (Linear Time-invariant) system 產生 transfer function
### 3.2 Definition of laplace transform
- Laplace Transform:
- Inverse Laplace Transform:
- Laplace transformable:
- Region of Convergence(ROC):Laplace transform 就是會收斂的範圍 $Re(s) = σ >σ_c$
- example:
### 3.3 Properties of the laplace transform
- ***Linearity***:
- 
- ***Scaling***:
- 
- ***Time Shifting***:
- 
- ***Frequency Shifting***:
- 
- ***Time Differentiation***:
- 
- ***Time Convolution***:
- 
- ***Time Integration***:
- 
- **Frequency Differentiation**:
- 
- **Initial and Final values**:已知,當
- all Properties:
- 
- 
### 3.4 The inverse laplace transform
- ***Definition***:
- ***Simple Poles***:
- 已知:<span style="background-color: #c8d8df; display: block; padding: 2% 2% 0.5% 2%; border-radius: 15px;">我們已知,故在 Simple poles 可以直接從 $X(s)$ 回推 $x(t)$</span>
- formate:
- ***Repeated Poles***
- 已知:<span style="background-color: #ffd7c1; display: block; padding: 2% 2% 0.5% 2%; border-radius: 15px;">因為 $(s+p)^n$ 出現,因此需要 **`微分`** 來找 $k$,且(可以由 Frequency Differentiation 推導)
</span>
- format:
- 補充:當看到 $L^{-1}[\frac{1}{s^2}] = t$ 也是用此 pole
- ***Complex Poles***:
- 已知:<span style="background-color: #e2f8f0; display: block; padding: 2% 2% 0.5% 2%; border-radius: 15px;"> ***Frequency Shifting*** 
、故 Complex Poles 可以應用</span>
- formate:**先從分母找 $\alpha$、$\beta$,再調整分子看 A B**
- 延伸:$sin$ 跟 $cos$ 可以合併
### 3.5 Transfer function
- 定義:<span style="background-color: #ffd7c1; display: block; padding: 2% 2% 0.5% 2%; border-radius: 15px;">$H(s)$為輸出結果 $Y(s)$ 與輸入結果 $X(s)$ 的比值,如此一來,再利用 Inverse Laplace Transfer,就可以輕鬆找到 $h(t)$</span>
- 
- ***Cascade connection***:
- ***Parrallel interconnection***:
- ***Feedback interconnection***:
### 3.6 Integro-Differential equations

## 4. Fourier Series
## 5. Fourier Transform
## 6. Discrete Fourier Transform
## 7. z-Transform
- 我們需要 z-transform 的原因是 Fourier transform 沒辦法 converge for all sequences
- 傅立葉轉換
- z-transform
- one-sided or unilateral z-transform