# 112學年度_彰化高中_第一次教甄_填充題23 **如圖所示,質量為 $m_1$ 的直角三角形塊,其中一角為 $α$,直角邊靠在光滑的鉛直牆上,斜邊壓在質量為 $m_2$ 的立方塊上,立方塊放在光滑的地面上。試問:立方塊的加速度 $a_2$ 為何?** <center> <img src="https://hackmd.io/_uploads/BJ9OR7sSh.png" width="200"> </center> <br> **應用觀念:牛頓力學** <br> ${\color{red}{詳解:}}$ 假設,$m_1$ 有一向下加速度為 $a_1$,其受力圖如下 <center> <img src="https://hackmd.io/_uploads/r1kTNEjrn.png" width="400"> </center> <br> 討論 $y$ 方向合力,則 \begin{aligned} \Sigma F_y=0 &\implies m_1g-N\cos{\alpha}=m_1a_1\\ &\implies N\cos{\alpha}=m_1g-m_1a_1\\ \ \end{aligned} $m_2$ 部分,假設有一向右加速度為 $a_2$,討論 $x$ 方向合力,則 <center> <img src="https://hackmd.io/_uploads/ryYNHNsrn.png" width="400"> </center> <br> \begin{aligned} \Sigma F_x=m_2a_2 &\implies N\sin{\alpha}=m_2a_2\\ \ \end{aligned} 利用上述兩式,得到 \begin{aligned} \frac{N\sin{\alpha}}{N\cos{\alpha}}=\frac{m_2a_2}{m_1g-m_1a_1} \implies \tan{\alpha}=\frac{m_2a_2}{m_1g-m_1a_1} \end{aligned} 其中 $a_1$ 和 $a_2$ 之關係可以利用位移關係得到: <center> <img src="https://hackmd.io/_uploads/SyivUVjSn.png" width="400"> </center> <br> \begin{aligned} \tan{\alpha}=\frac{|x_1|}{|x_2|}=\frac{\mathrm{d^2}|x_1| \over \mathrm{d}t^2}{\mathrm{d^2}|x_2| \over \mathrm{d}t^2}=\frac{a_1}{a_2} \implies a_1=a_2\tan{\alpha} \end{aligned} 將其代入 \begin{aligned} \tan{\alpha}=\frac{m_2a_2}{m_1g-m_1a_1}=\frac{m_2a_2}{m_1g-m_1a_2\tan{\alpha}} \implies a_2={\color{red}{\frac{m_1g}{m_1\tan{\alpha}+m_2\cot{\alpha}}}} \end{aligned} @Hikari209518 ###### tags: `牛頓力學`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up