# 112學年度_嘉義高中_第一次教甄_計算題03 **如右圖,一粗糙半球體固定於地面,半徑為 $R$,在最高點有一小圓球半徑 $a(a << R)$ 原本靜止,因受一極小推力而受重力 $g$ 影響,開始滾動(只有滾動沒有滑動)。若物在距地面高 $h_0$ 時恰離開球面,試求:(a) $h_0$ 與 $R$ 的關係。(b) 小球離開球面前,正向力 $N$ 與任意高度 $h$ 的關係。** <center> <img src="https://hackmd.io/_uploads/S1xiln7H3.png" width="300"> </center> <br> **應用觀念:** 1. 力學能守恆:動能須包含移動動能與轉動動能 2. 鉛直面圓周運動 <br> ${\color{red}{詳解:}}$ <center> <img src="https://hackmd.io/_uploads/HJCdmTQr2.png" width="300"> </center> <br> **(a)** 因下降過程中,只有重力作功,當小球在高度 $h$ 時,速度大小可以力學能守恆計算: \begin{aligned} E_R=E_h &\implies mgR+0=mgh+{1 \over 2}mv^2+{1 \over 2}I\omega^2\\ \ \end{aligned} 因為純滾動,故 \begin{aligned} \left\{ \begin{array}{l} \omega={v \over a} \\ I={2 \over 5}ma^2 \end{array} \right. &\implies {1 \over 2}I\omega^2={1 \over 2}\times {2 \over 5}ma^2\times {v^2 \over a^2}={1 \over 5}mv^2\\ \ \end{aligned} 代回力學能守恆之式子, \begin{aligned} E_R=E_h &\implies mgR+0=mgh+{1 \over 2}mv^2+{1 \over 2}I\omega^2\\ &\implies mg(R-h)={1 \over 2}mv^2+{1 \over 5}mv^2={7 \over 10}mv^2\\ &\implies v^2={10 \over 7}g(R-h)\\ \ \end{aligned} 恰離開球面即$N=0$,則重力分力提供向心力,且 $h=h_0$,故 <center> <img src="https://hackmd.io/_uploads/BktZHaXB2.png" width="300"> </center> <br> \begin{aligned} mg\cos{\theta}=F_c={mv^2 \over r} &\implies mg{h_0 \over R}=m{{10 \over 7}g(R-h_0) \over R}\\ &\implies h_0={10 \over 7}(R-h_0)\\ &\implies {17 \over 7}h_0={10 \over 7}R\\ &\implies h_0={\color{red}{{10 \over17}R}} \end{aligned} **(b)** 若未離開球表面,則 \begin{aligned} \Sigma F=F_c &\implies mg\cos{\theta}-N={mv^2 \over r}\\ &\implies mg{h \over R}-N=m{{10 \over 7}g(R-h) \over R}\\ &\implies N={mgh \over R}-{10 \over 7}{mg(R-h) \over R}\\ &\implies N={17 \over 7}{mgh \over R}-{10 \over 7}mg\\ &\implies N={{mg \over 7R}(17h-10R)}\\ \ \end{aligned} \begin{aligned} \left\{ \color{red}{ \begin{array}{l} h\ge h_0 \implies N={{\frac{mg}{7R}}(17h-10R)} \\ h\lt h_0 \implies N=0 \end{array}} \right. \end{aligned} @Hikari209518 ###### tags: `力學能守恆` `鉛直面圓周運動`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up