# 112學年度_中壢高中_第二次教甄_填充題05 **在光滑水平絕緣平面上,放置一長為 $\ell$ 的彈簧,兩端各連接相同小球,兩球原為靜止,如圖所示。今使二小球突然帶相同電量,因斥力作用可使彈簧彈開。設第一次兩小球之帶電量均為 $+q_1$,最大伸長量為 $\cfrac{\ell}{2}$;第二次兩球的帶電量皆為$+q_2$,可使彈簧最大伸長量為$\cfrac{\ell}{4}$,則彈簧達到最大伸長量時,兩次電力之比為?** <center> <img src="https://hackmd.io/_uploads/HJVocnEIh.png" width="350"> </center> <br> **應用觀念:力學能守恆** <br> ${\color{red}{詳解:}}$ 根據力學能守恆列式,對 $q_1$ 部分, \begin{aligned} E=E_0 &\implies \frac{kq_1^2}{\ell}=\frac{1}{2}k'(\frac{\ell}{2})^2+\frac{kq_1^2}{3\ell \over 2}\\ &\implies \frac{kq_1^2}{3\ell}=\frac{1}{8}k'\ell^2\\ &\implies q_1^2=\frac{3k'\ell^3}{8k} \end{aligned} 同理,對 $q_2$ 部分, \begin{aligned} E=E_0 &\implies \frac{kq_2^2}{\ell}=\frac{1}{2}k'(\frac{\ell}{4})^2+\frac{kq_2^2}{5\ell \over 4}\\ &\implies \frac{kq_2^2}{5\ell}=\frac{1}{32}k'\ell^2\\ &\implies q_2^2=\frac{5k'\ell^3}{32k} \end{aligned} 則彈簧達到最大伸長量時,兩次電力比為 \begin{aligned} F_1:F_2=\frac{kq_1^2}{({3\ell \over 2})^2}:\frac{kq_2^2}{({5\ell \over 4})^2}={1 \over 6}:{1 \over 10}={\color{red}{5:3}} \end{aligned} @Hikari209518 ###### tags: `力學能守恆`