# 112學年度_彰化高中_第一次教甄_填充題03 **如圖所示,一倉庫高 $25\text{ m}$,寬 $40\text{ m}$,今在倉庫前 $L$、高 $5\text{ m}$的 A 處拋一石塊,使石塊飛越過屋頂,試問:A 點距離倉庫$L$ 為多大時,初速度 $v_0$ 可以有最小值?$(g=10\text{ m/s}²)$** <center> <img src="https://hackmd.io/_uploads/BJw3A2FBn.png" width="350"> </center> <br> **應用觀念:斜向拋射** <br> ${\color{red}{詳解:}}$ 若要初速度 $v_0$ 為最小,可以思考為在跨過屋頂時,初速度也是最小,因此先假設物體經過屋頂左上方時,速度為 $v'$,仰角為 $45^\circ$,則 <center> <img src="https://hackmd.io/_uploads/Hy8bvptHh.png" width="350"> </center> <br> \begin{aligned} &R=v'\cos{45^\circ}T=v'\cos{45^\circ}\times {2v'\sin{45^\circ}\over g}={v'^2\over g}\\ &\implies v'=\sqrt{gR}=\sqrt{10\times 40}=20 \text{ (m/s)}\\ \end{aligned} 接著,考慮A點到屋頂左上方,$y$ 方向為等加速度運動 \begin{aligned} &\Delta y=(v'\sin{45^\circ})t+{1 \over 2}gt^2\\ &\implies 20=10\sqrt2t+5t^2\\ &\implies t^2+2\sqrt2t-4=0\\ &\implies t=-\sqrt2\pm\sqrt6(取正)\\ &\implies t=\sqrt6-\sqrt2 \text{ (s)} \end{aligned} $x$ 方向保持等速運動 \begin{aligned} L&=(v'\cos{45^\circ})t=10\sqrt2\times (\sqrt6-\sqrt2)\\&={\color{red}{20(\sqrt3-1)\text{ (m)}}} \end{aligned} @Hikari209518 ###### tags: `斜向拋射`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up