# 112學年度_彰化高中_第一次教甄_填充題20 **一半徑為 $R$ 的薄圓盤,均勻帶電量 $Q$,以通過圓盤中心的軸,等角速度 $ω$ 逆時鐘轉動,試問:圓盤中心處的磁場大小為何?** <center> <img src="https://hackmd.io/_uploads/Hk9xVMtB2.png" width="250"> </center> <br> **應用觀念:電流磁效應** <br> ${\color{red}{詳解:}}$ <center> <img src="https://hackmd.io/_uploads/S1pprBNSn.png" width="250"> </center> <br> 將圓盤切割為許多圓環,在距離圓心 $r$ 處圓環(紅色)所產生的電流為 (假設經過 $\Delta t$ 秒,圓盤轉動角度為 $\Delta \theta$ ) \begin{aligned} I_r={\Delta Q \over \Delta t}={{A_{red} \over A_{all}}Q \over \Delta t}={{r\Delta \theta \mathrm{d}r \over \pi R^2}Q \over \Delta t}={rQ\omega \over \pi R^2}\mathrm{d}r \end{aligned} 此電流在圓心所產生的磁場為 \begin{aligned} B_r={\mu_0I_r \over 2r}={\mu_0 \over 2r}{rQ\omega \over \pi R^2}\mathrm{d}r={\mu_0Q\omega \over 2\pi R^2}\mathrm{d}r \end{aligned} 將每一個圓環的磁場進行累加(積分) \begin{aligned} \int_0^R B_r=\int_0^R {\mu_0Q\omega \over 2\pi R^2}\mathrm{d}r={\color{red}{{\mu_0Q\omega \over 2\pi R}}} \end{aligned} <br> 此題與[112學年度_嘉義高中_第一次教甄_填充題16](/NSjJgCnNQhi1QVOF-Ien4w)完全相同。 @Hikari209518 ###### tags: `電流磁效應`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up