# 112學年度_嘉義高中_第一次教甄_填充題16 **一半徑為 $R$ 之塑膠盤,其面上均勻地分布著電荷 $q$,若該盤以角頻率 $ω$ 繞垂直通過盤心的中心軸旋轉,試求該盤中心的磁場為多少?** **應用觀念:電流磁效應** <br> ${\color{red}{詳解:}}$ <center> <img src="https://hackmd.io/_uploads/S1pprBNSn.png" width="250"> </center> <br> 將圓盤切割為許多圓環,在距離圓心 $r$ 處圓環(紅色)所產生的電流為 (假設經過 $\Delta t$ 秒,圓盤轉動角度為 $\Delta \theta$ ) \begin{aligned} I_r={\Delta Q \over \Delta t}={{A_{red} \over A_{all}}q \over \Delta t}={{r\Delta \theta \mathrm{d}r \over \pi R^2}q \over \Delta t}={rq\omega \over \pi R^2}\mathrm{d}r \end{aligned} 此電流在圓心所產生的磁場為 \begin{aligned} B_r={\mu_0I_r \over 2r}={\mu_0 \over 2r}{rq\omega \over \pi R^2}\mathrm{d}r={\mu_0q\omega \over 2\pi R^2}\mathrm{d}r \end{aligned} 將每一個圓環的磁場進行累加(積分) \begin{aligned} \int_0^R B_r=\int_0^R {\mu_0q\omega \over 2\pi R^2}\mathrm{d}r={\color{red}{{\mu_0q\omega \over 2\pi R}}} \end{aligned} @Hikari209518 ###### tags: `電流磁效應`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up