# 112學年度_嘉義高中_第一次教甄_計算題01 **質量 $m$ 的小物體,自質量 $M$、傾斜角 $θ$ 的可動斜面上,高 $h$ 處靜止下滑,在忽略一切阻力的情況下,重力加速度為 $𝑔$,當 $m$ 滑抵斜面底端時,斜面的速度為何?** <center> <img src="https://hackmd.io/_uploads/r1HV7U4Sn.png" width="400"> </center> <br> **應用觀念:** 1. 力學能守恆 2. 動量守恆 <br> ${\color{red}{詳解:}}$ 因系統$(m+M)$僅受重力作功,則力學能守恆,故 \begin{aligned} mgH={1 \over 2}Mv_M^2+{1 \over 2}mv_m^2 \end{aligned} 其中, $v_M$ 為斜面速度向左,$v_m$ 為小物速度,速度方向與水平夾 角為 $\phi$,如下圖所示。(因斜面會左移,則$v_m$ 與水平夾角並非 $\theta$ ) <center> <img src="https://hackmd.io/_uploads/ryGW7U4H3.png" width="400"> </center> <br> 因水平方向系統無受外力,則水平方向下滑前後動量守恆,故 \begin{aligned} Mv_M=mv_m\cos{\phi} \end{aligned} 因此,力學能守恆式可改寫為 \begin{aligned} mgH={1 \over 2}Mv_M^2+{1 \over 2}mv_m^2 &\implies mgH={1 \over 2}Mv_M^2+{1 \over 2}m(v_m^2\cos^2{\phi}+v_m^2\sin^2{\phi})\\ &\implies mgH={1 \over 2}Mv_M^2+{1 \over 2}mv_m^2\cos^2{\phi}(1+\tan^2{\phi})\\ &\implies mgH={1 \over 2}Mv_M^2+{1 \over 2}{M^2 \over m}v_M^2(1+\tan^2{\phi})\\ &\implies mgH={1 \over 2}Mv_M^2(1+{M \over m}(1+\tan^2{\phi})) \end{aligned} 此外,$\phi$ 與 $\theta$ 之關係為 \begin{aligned} \tan{\phi}={h \over \Delta x_m}={h \over {M \over M+m}{h \over \tan{\theta}}}\\ \implies \tan{\phi}={M+m \over M}\tan{\theta} \end{aligned} 代入上式,得到 \begin{equation} \begin{aligned} &mgH={1 \over 2}Mv_M^2(1+{M \over m}(1+\tan^2{\phi}))\\ &\implies mgH={1 \over 2}Mv_M^2(1+{M \over m}(1+({M+m \over M}\tan{\theta})^2))\\ &\implies mgH={1 \over 2}Mv_M^2(1+{M \over m}(1+({M+m \over M})^2\tan^2{\theta}))\\ &\implies mgH={1 \over 2}Mv_M^2(1+{M \over m}+{(M+m )^2 \over mM}\tan^2{\theta}))\\ &\implies v_M^2={2mgH \over M}{1 \over 1+{M \over m}+{(M+m )^2 \over mM}\tan^2{\theta}}\\ &\implies v_M^2={2mgH \over M}{mM \over mM+M^2+(M+m )^2 \tan^2{\theta}}\\ &\implies v_M^2={2m^2gH \over mM+M^2+(M+m )^2 \tan^2{\theta}}\\ &\implies v_M={\color{red}{\sqrt{{2m^2gH \over mM+M^2+(M+m )^2 \tan^2{\theta}}}}}\\ \end{aligned} \end{equation} @Hikari209518 ###### tags: `力學能守恆` `動量守恆`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up