# 112學年度_嘉義高中_第一次教甄_填充題08 **如圖所示,輕繩跨過圓心相距 $2L$ 的兩小定滑輪,繩兩端各掛物體A、B,兩滑輪中點O也掛一物體C,A、B、C 三物體質量皆相等,若先用手托住C,使跨過兩滑輪間之輕繩成水平狀態,然後突然放手讓C落下,則C可下降之最大距離為多少?** <center> <img src="https://hackmd.io/_uploads/HkGZL17Bh.png" width="150"> </center> <br> **應用觀念:力學能守恆** <br> ${\color{red}{詳解:}}$ C下降至最大距離的瞬間,C物體速度為零,A、B速度亦為零(若A.B有向上速度,C則可以再往下)。因整個過程,系統(A+B+C)只有重力作功,則力學能守恆。可列式 \begin{aligned} E_i=E_f \implies K_i+U_{A,i}+U_{B,i}+U_{C,i}=K_f+U_{A,f}+U_{B,f}+U_{C,f}\\ \ \end{aligned} 假設,一開始A.B.C皆位於相同高度,以此高度為零位面,令C物體下降最大距離為$\Delta h_c$,則 <center> <img src="https://hackmd.io/_uploads/r16YFg7S3.png" width="550"> </center> <br> \begin{aligned} E_i=E_f &\implies K_i+U_{A,i}+U_{B,i}+U_{C,i}=K_f+U_{A,f}+U_{B,f}+U_{C,f}\\ &\implies 0+0+0+0=0+mgh+mgh+mg(-\Delta h_c)\\ &\implies mg(\Delta h_c)=mg(\sqrt{(\Delta h_c)^2+L^2}-L)+mg(\sqrt{(\Delta h_c)^2+L^2}-L)\\ &\implies \Delta h=2 (\sqrt{(\Delta h_c)^2+L^2}-L)\\ &\implies ({\Delta h_c \over 2}+L)^2 =4(\Delta h_c)^2+4L^2\\ &\implies {(\Delta h_c)^2 \over 4}+\Delta h_c\times L+L^2=4(\Delta h_c)^2+4L^2\\ &\implies {3(\Delta h_c)^2 \over 4}-\Delta h_c\times L=0\\ &\implies (\Delta h_c)({3\Delta h_c \over 4}-L)=0\\ &\implies \Delta h_c={\color{red}{{4 \over 3}L}} \end{aligned} @Hikari209518 ###### tags: `力學能守恆`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up