# 112學年度_中壢高中_第二次教甄_填充題20 **質量 $m$ 之物體原靜止在光滑水平面上,一水平外力以固定功率 $P$ 作用在此質點上使其開始運動,試問施力歷時 $t$ 後,物體之位移為?** <br> <br> **應用概念:牛頓力學** <br> ${\color{red}{詳解:}}$ 利用各項定義,進行積分 \begin{aligned} P=Fv &\implies P=mav=m(\frac{\mathrm{d}v}{\mathrm{d}t})v \\ &\implies \frac{P}{m}\mathrm{d}t=v\mathrm{d}v \\ &\implies \int_0^t\frac{P}{m}\mathrm{d}t=\int_0^vv\mathrm{d}v\\ &\implies \frac{Pt}{m}=\frac{1}{2}v^2\\ \ \end{aligned} >馬弘昌師提供之解法:根據功能定理與功率之定義 ><br> >\begin{equation} >\begin{cases} >W=\Delta E_k\\ >W=P\Delta t >\end{cases} >\implies \Delta E_k=P\Delta t \implies \frac{1}{2}mv^2=Pt >\end{equation} ><br> 利用 $v$ 的定義,再進行一次積分, \begin{aligned} \frac{Pt}{m}=\frac{1}{2}v^2 &\implies v=\sqrt{{2Pt} \over m} \\ &\implies \frac{\mathrm{d}x}{\mathrm{d}t}=\sqrt{{2Pt} \over m} \\ &\implies \mathrm{d}x=\sqrt{{2Pt} \over m} \mathrm{d}t\\ &\implies \int_0^x\mathrm{d}x=\int_0^t\sqrt{{2Pt} \over m} \mathrm{d}t\\ &\implies x=\sqrt{{2P} \over m}({2 \over 3}t^{3\over 2})={\color{red}{\sqrt{{8Pt^3} \over 9m}}}\\ \end{aligned} @Hikari209518 ###### tags: `牛頓力學`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up