# 112學年度_嘉義高中_第一次教甄_填充題10 **.質量 $m$,長度 $L$,電阻可以忽略的金屬棒,自與水平夾 $θ$ 角之U形光滑金屬軌道上自由下滑,若重力加速度為 $g$,軌道的電阻為 $R$,且整個裝置置於強度為 $B$ 的向下均勻磁場中,如右圖,當金屬棒下滑速率為最大速率的 $\cfrac{1}{4}$ 時,金屬棒的瞬時加速度量值為若干?** <center> <img src="https://hackmd.io/_uploads/SyfyneTV2.png" width="250"> </center> <br> **應用觀念:** 1. 法拉第定律:感應電動是等於封閉線圈內磁通量的時變率 2. 勞侖茲力:載流導線在磁場中的受力情形 <br> ${\color{red}{詳解:}}$ 利用法拉第定律(感應電動是等於封閉線圈內磁通量的時變率),計算金屬棒所產生的電動勢 <center> <img src="https://hackmd.io/_uploads/BkZzr-TN3.png" width="300"> </center> \begin{aligned} \varepsilon=LvB\sin{\varphi}=LvB\sin{(90^{\circ}-\theta)}=LvB\cos{\theta}\\ \ \end{aligned} 因為有電動勢,形成電流,因此金屬棒在磁場中受到勞侖茲力, \begin{aligned} F=iLB={\varepsilon \over R}\times LB={L^2vB^2\cos{\theta} \over R}\\ \ \end{aligned} 考慮斜面方向合力 <center> <img src="https://hackmd.io/_uploads/SyuwEW6Nh.png" width="300"> </center> \begin{aligned} \Sigma F=mg\sin{\theta}-F\cos{\theta}=mg\sin{\theta}-{L^2vB^2\cos^2{\theta}\over R}\\ \ \end{aligned} 若$v=v_{max}$,則合力為零,因此 \begin{aligned} {L^2v_{max}B^2\cos^2{\theta} \over R}=mg\sin{\theta}\\ \ \end{aligned} 若速率為最大速率的${1 \over 4}$,則合力可表示為 \begin{aligned} \Sigma F&=mg\sin{\theta}-F'\cos{\theta}\\ &=mg\sin{\theta}-{L^2v'B^2\cos^2{\theta} \over R}\\ &=mg\sin{\theta}-{L^2({1 \over4 }v_{max})B^2\cos^2{\theta} \over R}\\ &=mg\sin{\theta}-{1 \over4 }{L^2v_{max}B^2\cos^2{\theta} \over R}\\ \ \end{aligned} 因為 \begin{aligned} {L^2v_{max}B^2\cos^2{\theta} \over R}=mg\sin{\theta}\\ \ \end{aligned} 所以 \begin{aligned} \Sigma F=ma&\implies mg\sin{\theta}-{1 \over4 }{L^2v_{max}B^2\cos^2{\theta} \over R}=ma \\ &\implies mg\sin{\theta}-{1 \over4 }mg\sin{\theta}=ma\\ &\implies a={\color{red}{{3 \over 4}g\sin{\theta}}}\\ \ \end{aligned} @Hikari209518 ###### tags: `法拉第定律` `勞侖茲力`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up