# 112學年度_全國聯招_單選題06 **如圖所示,一單擺擺繩長度為 $L$,擺錘質量為 $m$,今將擺錘拉至與鉛直方向夾角為$60°$的位置由靜止釋放,則擺錘在擺至最低點時,與質量 $2m$ 的小球(置於光滑水平桌面上)作完全非彈性碰撞,則擺錘可以再往上擺的最大高度為何? $(A){1 \over 3}L \ \ (B){1 \over 6}L \ \ (C){1 \over 9}L \ \ (D) {1 \over 18}L$** <center> <img src="https://hackmd.io/_uploads/ByFlabzKa.png" width="200"> </center> <br> **應用概念:** 1. 力學能守恆 2. 等速率圓周運動 <br> <font color="#f00">詳解:</font> <br> <br> 先計算小球 $m$ 碰撞前之瞬時速度大小,因為僅受重力(保守力)作功,則力學能守恆: \begin{aligned} E_f=E_i &\Longrightarrow mgH_f+{1 \over 2}mv^2=mgH_i\\ &\Longrightarrow v=\sqrt{2g(H_i-H_f)}=\sqrt{gL} \end{aligned} <br> 利用完全非彈性碰撞(總動量守恆)計算碰撞後速度大小 \begin{aligned} p_f=p_i &\Longrightarrow mv=(m+2m)v'\\ &\Longrightarrow v'={1 \over 3}v={1 \over 3}\sqrt{gL} \end{aligned} <br> 再利用力學能守恆 \begin{aligned} E_f=E_i &\Longrightarrow mgH={1 \over 2}mv'^2\\ &\Longrightarrow H=\frac{v'^2}{2g}=\frac{1}{18}L \end{aligned} 故答案為$(D)$ @Hikari209518 ###### tags: `力學能守恆` `圓周運動`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up