# Distanzunterricht vom 08.02.2021 $$ f_1(x) = - \dfrac{1}{6}(x-3)(x+6) $$ $$ f_2(x) = \dfrac{1}{4}(x+3)^2-5 $$ $$ f_3(x) = (x^2+2)(x-4) $$ #### Gesucht: Extremstellen $$ f_1(x) = - \dfrac{1}{6}(x^2+3x-18) $$ $$ f_1(x) = - \dfrac{1}{6}x^2 - \dfrac{1}{2} x + 3x^0 $$ $$ f_1'(x) = - \dfrac{1}{3}x - \dfrac{1}{2} $$ Erste Ableitung zu Null setzen: $$ 0 = f_1'(x) $$ $$ 0 = - \frac{1}{3}x - \frac{1}{2} $$ $$ \frac{1}{3}x = - \frac{1}{2} $$ $$ x = - \frac{3}{2} $$ $$ \Rightarrow x = -1,5 $$ ## 2. Funktion $$ f_2(x) = \dfrac{1}{4}(x+3)^2-5 $$ $$ f_2'(x) = \frac{1}{2}x+\frac{3}{2} $$ $$ \Rightarrow x = -3 $$ ### Produktregel $$ f(x) = u(x) \cdot v(x) $$ z. B. $$ f_1(x) = - \dfrac{1}{6}(x-3)(x+6) $$ mit $$ u(x) = (x-3) $$ und $$ v(x) = (x+6) $$ $$ f_1'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) $$ $$ f_1'(x) = - \dfrac{1}{6}(1 \cdot (x+6) + (x-3) \cdot 1) $$ $$ f_1'(x) = - \dfrac{1}{6}(x+6+x-3) = - \dfrac{1}{6}(2x + 3) = -\frac{1}{3}x - \frac{1}{2} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up