# Advancing RAG with Fine-tuned Gemma - 廖聖傑(JimmyLiao) {%hackmd @HWDC/BJOE4qInR %} >#### 》[議程介紹](https://hwdc.ithome.com.tw/2024/lab-page/3234) >#### 》[填寫議程滿意度問卷|回饋建言給辛苦的講者](https://forms.gle/M5dLgWuLjx4yUsMq7) > Slide: https://docs.google.com/presentation/d/1e7wKsOAp3LcKUW4iKXkwyWBnKn6E90YIm0kVpcXi1Ng/mobilepresent?slide=id.g2fdf3371a50_0_524 ## Part0 - RAG 特定知識的問答系統,跟 ChatGPT 不同 ref: https://www.google.com/url?q=https://www.linkedin.com/posts/mr-deepak-bhardwaj_ai-machinelearning-datascience-activity-7238890112581787648-ImO7&sa=D&source=editors&ust=1726023675281826&usg=AOvVaw02y6N4rFgH2HRiuPjciQvf  ## Part1 - Dify Cloud: https://cloud.dify.ai/apps Source: https://github.com/langgenius/dify Template: Knowledge Retreival + Chatbot Low Code 快速 PoC 使用 ## Part2 ## Part3 - Fine-Tune 開源模型 => 初始化參數(Adapter) + Fundation Model 微調完可以 Match 某程度的特定能力(如公司相關的領域知識),但也會伴隨 Loss 某些其他能力 https://github.com/jimmyliao/workshop-gemma
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up