# Arm 架構驅動雲端原生 DevOps 與生成式 AI 的創新轉型:高效能、低功耗的雙贏實踐與成功案例 - 沈綸銘(Odin Shen)
{%hackmd @HWDC/BJOE4qInR %}
>#### 》[議程介紹](https://hwdc.ithome.com.tw/2024/session-page/3326)
>#### 》[填寫議程滿意度問卷|回饋建言給辛苦的講者](https://forms.gle/D6hVC5R5DXNzk7QK8)
(不開放錄影與拍照)
# Brief
為什麼要講軟體?
# Agenda
* Arm Computing Platform
* Arm Software Ecosystem
* Key focus
* Cloud Migration
* AI Perference
* Windows On Arm
* Arm Development Program
# Who is ARM
作CPU, GPU架構授權的公司。
* 290+ Billion chip
* 跟1000多家公司有合作,像是slack, Github, HuggingFace
* 20 milliion的開發者再用ARM的開發平台
# Arm Computing Platform Around the World
* 手機
* 基礎建設
* 汽車
* IoT
# Arm Neoverse in the Cloud
AWS, Microsoft, Google, NVDIA都使用Neoverse V2架構
* AWS 60%
* Azure 40%
* GCP 60%
這樣大家不就是打架?因為ARM很有彈性讓各家公司自己設計需要的晶片
* Such as AWS Gravition4
## Google Axion Processor
## Alibaba Cloud Yitian*(倚天) 710 Uplift
# AI is Everywhere
# AI is Expensive
(power consumption)
2027年會是2倍的power consumption of Google Data Centers
PS. 22B kWh in 2022
# The Evolution of AI - New Challenages
# Arm CARES about Software
# Arm's Pivotal Role in the Software Ecosystem
- 40% of Arm Engineers focused on software
- 1000 Open source engineers in Arm
很多底層的Open Source的Foundation都是由ARM的平台與工程師設計出來與優化的
# Arm's Open-Source Investemets
- 1200+ Open-Source project from Cloud to edge
- e.g. linaro / Windows
- arm mali GPU
- Collabora
- python
- CMSIS
- armRAN
- 投資大量資源在opens source,擴展生態
# Windows on Arm (WoA) Ecosystem readiness
- Apps ISVs
- OEM Devices
- Arm在Windows上跟很多Software 合作能原生支援ARM
# The Software Developer Challenges
- Hardware
Optimizing code performance & depolyment
- Software
Blurring the lines between verticals
- AI
Staggering growth - developers need to keep up
# 3 types of scenarios - Key focus areas for developers on Arm
* Cloud Migration
* Seamlessly Migrate Your Code to an Energy- Efficient Cloud Platform
* AI Performance
* Unleash the AI performance on arm CPUs
* Windows On Arm
* Seamlessly Migrate your app to Windows on Arm
# Cloud Migration
## Docker on Arm
* 跨平臺,開發者效率高
* 2019開始就在不同的作業系統上面開始合作
* 在Docker上面會有ARM原生的Image
## Pre-installed AArch64 Docker Images
* Pre-install TensorFlow, TensorFlowLite, Pytorch & ArmNN AArch64 docker images for developing across operating systems and easily sharing project
## Arm64 on Github Actions
[LINK](https://github.blog/news-insights/product-news/arm64-on-github-actions-powering-faster-more-efficient-build-systems/)
Github Actions在後台會自動launch一個ARM的系統執行Action
Github Actions + MLOps
## Github Actions MLOPs Example
[..Live Demo..] from Arm-Labs/gh_armrunner_mlops_gtsrb
https://learn.arm.com/migration

## Select Architecture & Cloud
## Plan, Test and Optimize
# AI performance
## Accelerating Hugging Face Models using Arm Neoverse
[Live Demo]
* 很多HuggingFace上的工具不一定需要nvidia的GPU,用ARM的CPU就可以了
## Run a Large Language ....
## Introducting Arm Kleidi
* KleidiAI: 用手機就可以使用大語言模型
* KleidiCV:
* 聲稱可加速Llama3 190%
## Arm KlediAi Accelerate Generative AI and Modeling
## Arm Kleidi Libraries
## KleidiAI Tutorial & Demo
Learn more
[Unlocking New Real-world Generative AI Use Cases on the Mobile CPU](https://newsroom.arm.com/blog/generative-ai-use-cases-mobile-cpu)
[Live Demo]
# Windows on Arm
[windowsperf-gui-the-visual-studio-2022-extension](https://www.linaro.org/blog/introducing-the-windowsperf-gui-the-visual-studio-2022-extension/)
# Arm Developer Program
[LINK](https://www.arm.com/zh-TW/resources/developer-program)
11,000+ Members
130 ambassadors
Arm ecosystem dashboard [[LINK](https://www.arm.com/developer-hub/ecosystem-dashboard)]
==QA==
1.如果我有APP 測看看在arm上有沒有問題, 我該怎麼做:
1.1 如果不是太複雜的話用Github, 再來用雲上AWS 用coupon
2. Github vs Gitlab
gilab will be the next
3.
==以下聊天區====
> 他沒有提供投影片哪來連結啊
>> 我剛也在想這件事,感覺會後應該會提供吧 XD
找Key word 找連結
會後會提供「安全版」簡報
> 他這邊一直在說的軟體,是指介於作業系統跟編譯器之間的軟體嗎?因為對於上層的開發者來說應該不用去管用什麼 hardware 吧?只要那個 programming language 有支援跨平台就可以跑
>> 應該是說支援上層開發者的軟體,比如Github Actions的instance可以用ARM
但是我看之前ARM PC的評測很慘? 電子垃圾等級,好像是用高通得CPU
> 請問 Apple 的 M2, M4 也是 arm 嗎?
>> 是
有點難想像為什麼 cloud instance 為什麼要用 arm ?
> 便宜,成本低
> 像使用樹莓派(Arm)來跑docker,這時候可以無痛遷上雲
> 相容性還是不如x86,不過有在進步,不要太冷門就好,我之前用s390x(IBM的mainframe CPU),超慘,快跳樓了
ARM或x86有支援Ollama或是llama.cpp的加速嗎? (有回答了)
感覺這個 Talk 的目的是在宣傳 arm
> 第一贊助商
>> 原來是金主爸爸,失敬失敬
>> Keynote不都是這樣嗎? 不過也是說了不少東西