# Arm 架構驅動雲端原生 DevOps 與生成式 AI 的創新轉型:高效能、低功耗的雙贏實踐與成功案例 - 沈綸銘(Odin Shen) {%hackmd @HWDC/BJOE4qInR %} >#### 》[議程介紹](https://hwdc.ithome.com.tw/2024/session-page/3326) >#### 》[填寫議程滿意度問卷|回饋建言給辛苦的講者](https://forms.gle/D6hVC5R5DXNzk7QK8) (不開放錄影與拍照) # Brief 為什麼要講軟體? # Agenda * Arm Computing Platform * Arm Software Ecosystem * Key focus * Cloud Migration * AI Perference * Windows On Arm * Arm Development Program # Who is ARM 作CPU, GPU架構授權的公司。 * 290+ Billion chip * 跟1000多家公司有合作,像是slack, Github, HuggingFace * 20 milliion的開發者再用ARM的開發平台 # Arm Computing Platform Around the World * 手機 * 基礎建設 * 汽車 * IoT # Arm Neoverse in the Cloud AWS, Microsoft, Google, NVDIA都使用Neoverse V2架構 * AWS 60% * Azure 40% * GCP 60% 這樣大家不就是打架?因為ARM很有彈性讓各家公司自己設計需要的晶片 * Such as AWS Gravition4 ## Google Axion Processor ## Alibaba Cloud Yitian*(倚天) 710 Uplift # AI is Everywhere # AI is Expensive (power consumption) 2027年會是2倍的power consumption of Google Data Centers PS. 22B kWh in 2022 # The Evolution of AI - New Challenages # Arm CARES about Software # Arm's Pivotal Role in the Software Ecosystem - 40% of Arm Engineers focused on software - 1000 Open source engineers in Arm 很多底層的Open Source的Foundation都是由ARM的平台與工程師設計出來與優化的 # Arm's Open-Source Investemets - 1200+ Open-Source project from Cloud to edge - e.g. linaro / Windows - arm mali GPU - Collabora - python - CMSIS - armRAN - 投資大量資源在opens source,擴展生態 # Windows on Arm (WoA) Ecosystem readiness - Apps ISVs - OEM Devices - Arm在Windows上跟很多Software 合作能原生支援ARM # The Software Developer Challenges - Hardware Optimizing code performance & depolyment - Software Blurring the lines between verticals - AI Staggering growth - developers need to keep up # 3 types of scenarios - Key focus areas for developers on Arm * Cloud Migration * Seamlessly Migrate Your Code to an Energy- Efficient Cloud Platform * AI Performance * Unleash the AI performance on arm CPUs * Windows On Arm * Seamlessly Migrate your app to Windows on Arm # Cloud Migration ## Docker on Arm * 跨平臺,開發者效率高 * 2019開始就在不同的作業系統上面開始合作 * 在Docker上面會有ARM原生的Image ## Pre-installed AArch64 Docker Images * Pre-install TensorFlow, TensorFlowLite, Pytorch & ArmNN AArch64 docker images for developing across operating systems and easily sharing project ## Arm64 on Github Actions [LINK](https://github.blog/news-insights/product-news/arm64-on-github-actions-powering-faster-more-efficient-build-systems/) Github Actions在後台會自動launch一個ARM的系統執行Action Github Actions + MLOps ## Github Actions MLOPs Example [..Live Demo..] from Arm-Labs/gh_armrunner_mlops_gtsrb https://learn.arm.com/migration ![image](https://hackmd.io/_uploads/SJqPItC30.png) ## Select Architecture & Cloud ## Plan, Test and Optimize # AI performance ## Accelerating Hugging Face Models using Arm Neoverse [Live Demo] * 很多HuggingFace上的工具不一定需要nvidia的GPU,用ARM的CPU就可以了 ## Run a Large Language .... ## Introducting Arm Kleidi * KleidiAI: 用手機就可以使用大語言模型 * KleidiCV: * 聲稱可加速Llama3 190% ## Arm KlediAi Accelerate Generative AI and Modeling ## Arm Kleidi Libraries ## KleidiAI Tutorial & Demo Learn more [Unlocking New Real-world Generative AI Use Cases on the Mobile CPU](https://newsroom.arm.com/blog/generative-ai-use-cases-mobile-cpu) [Live Demo] # Windows on Arm [windowsperf-gui-the-visual-studio-2022-extension](https://www.linaro.org/blog/introducing-the-windowsperf-gui-the-visual-studio-2022-extension/) # Arm Developer Program [LINK](https://www.arm.com/zh-TW/resources/developer-program) 11,000+ Members 130 ambassadors Arm ecosystem dashboard [[LINK](https://www.arm.com/developer-hub/ecosystem-dashboard)] ==QA== 1.如果我有APP 測看看在arm上有沒有問題, 我該怎麼做: 1.1 如果不是太複雜的話用Github, 再來用雲上AWS 用coupon 2. Github vs Gitlab gilab will be the next 3. ==以下聊天區==== > 他沒有提供投影片哪來連結啊 >> 我剛也在想這件事,感覺會後應該會提供吧 XD 找Key word 找連結 會後會提供「安全版」簡報 > 他這邊一直在說的軟體,是指介於作業系統跟編譯器之間的軟體嗎?因為對於上層的開發者來說應該不用去管用什麼 hardware 吧?只要那個 programming language 有支援跨平台就可以跑 >> 應該是說支援上層開發者的軟體,比如Github Actions的instance可以用ARM 但是我看之前ARM PC的評測很慘? 電子垃圾等級,好像是用高通得CPU > 請問 Apple 的 M2, M4 也是 arm 嗎? >> 是 有點難想像為什麼 cloud instance 為什麼要用 arm ? > 便宜,成本低 > 像使用樹莓派(Arm)來跑docker,這時候可以無痛遷上雲 > 相容性還是不如x86,不過有在進步,不要太冷門就好,我之前用s390x(IBM的mainframe CPU),超慘,快跳樓了 ARM或x86有支援Ollama或是llama.cpp的加速嗎? (有回答了) 感覺這個 Talk 的目的是在宣傳 arm > 第一贊助商 >> 原來是金主爸爸,失敬失敬 >> Keynote不都是這樣嗎? 不過也是說了不少東西