## Q1 Please determine whether the followings are true or false in the universe of real number. 1. $\forall a \exists x(x^2 =a)$ 2. $\forall a \exists a(x+a =0)$ 3. $\exists a \forall x(x+a =0)$ 4. $\forall x \exists a(ax =0)$ 5. $\forall x \exists y(x<y)$ 6. $\exists x \forall y(x<y)$ 7. $\forall x \forall y(x=y\Rightarrow x^2 = y^2)$ 8. $\forall x \forall y(x^2=y^2\Rightarrow x = y)$ ## Q2 Which one is tautology? 1. $(P\vee \neg P) \wedge Q$ 2. $(P\vee \neg P) \vee Q$ ## Q3 Using truth tables, show that $$ \neg( P\rightarrow Q)\iff(P\vee \neg Q).$$ ## Q4 Is $(P\vee Q)$and$(\neg Q\rightarrow P)$ logically equivalent? ## Q5 Please show that $P\rightarrow(Q\rightarrow R) \iff (P\wedge Q)\rightarrow R$. ## Q6 Please show that if $A-B\subseteq C$ then $A-C\subseteq B$. ## Q7 Let $A_n = \left\{1, 2, 3\cdots n\right\}$ for $n\in\mathbb{N}$, please evaluate $\cup_{n\in \mathbb{N}}A_n, \cap_{n\in \mathbb{N}}A_n.$ ## Q8 Let $p$ and $q$ be prime numbers. Define $A = \left\{p^i, i\in \mathbb{N}\right\}$ and $B = \left\{q^i, i\in \mathbb{N}\right\}$, show that if $A\cap B\neq \phi$ then $A=B$. ## Q9 Consider $A_n = \left[\dfrac{1}{n}, 1\right]$ please find $\cup_{n\in \mathbb{N}}A_n$, and explain your reason. ## Q10 Consider $A_n = \left[-1, \dfrac{1}{n}\right)$ please find $\cap_{n\in \mathbb{N}}A_n$, and explain your reason. You may use the [Archimedean property](https://zh.wikipedia.org/wiki/%E9%98%BF%E5%9F%BA%E7%B1%B3%E5%BE%B7%E5%85%AC%E7%90%86)