--- tags: HW03 --- # ***Computational Hydraulics*** ## **Group 01:** N88071053 洪豪男 N88091011 黃彥鈞 ## **HW03:**derive the wave equation: from the second oder form to the equation system form. **The wave equation** $u_{tt} = c^2\,u_{xx}\,,\quad -\infty < x < \infty$ initial data $\left\{ \begin{array}{l} \ u(x,0) = u_0(x)\\ \ u_t(x,0)=u_1(x)\ \end{array}\right .$ with$\quad v=u_x,\quad w=u_t$ $\quad\quad\quad\quad\quad\Downarrow$ $\dfrac{\partial}{\partial t} \left(\begin{array}{c} v \\ w\end{array}\right) + \dfrac{\partial}{\partial x} \left(\begin{array}{c} -w \\ -c^2v\end{array}\right) = 0$ with $v(x,0) = u'_0(x)\,,\quad w(x,0)=u_1(x)$ and equation system, $\dfrac{\partial}{\partial t} \left(\begin{array}{c} w_1 \\ w_2\end{array}\right) +\left(\begin{array}{c} \lambda_1&0 \\ 0&\lambda_2\end{array}\right) \left(\begin{array}{c}\dfrac{\partial w_1}{\partial x}\\\dfrac{\partial w_1}{\partial x}\end{array}\right)=\left(\begin{array}{c} 0 \\ 0\end{array}\right)$ $\dfrac{\partial}{\partial t} \left(\begin{array}{c} v \\ w\end{array}\right) + \left(\begin{array}{c} -w_x \\ -c^2v_x\end{array}\right) = 0$ $\Rightarrow\dfrac{\partial}{\partial t} \left(\begin{array}{c} v \\ w\end{array}\right) + \left(\begin{array}{cc} 0 & -1 \\ -c^2 & 0\end{array}\right) \left(\begin{array}{c} v_x \\ w_x\end{array}\right) = 0$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up