--- tags: HW2.3 --- # ***Computational Hydraulics*** ## **Group 01:** N88071053 洪豪男 N88091011 黃彥鈞 ## **HW2.3:** Please compare the above (advection-diffusion) equaiton with the Navier-Stokes equatsions **Navier-Stokes equatsions (NSE) ( for incompressible fluid in X-direction )** $\rho(\dfrac{\partial{u}}{\partial{t}} +u\dfrac{\partial u}{\partial x}) =-\dfrac{\partial{p}}{\partial{x}} + {\mu}\dfrac{{\partial}^2{u}}{\partial{x}^2}+\rho g_x$ $\Rightarrow\dfrac{\partial{u}}{\partial{t}}+u\dfrac{\partial u}{\partial x} = -\dfrac{1}{\rho}\dfrac{\partial{p}}{\partial{x}} + \dfrac{\mu}{\rho}\dfrac{{\partial}^2{u}}{\partial{x}^2}+g_x$ **Advection-diffusion equation (ADE)** $\dfrac{\partial u}{\partial t} + u\dfrac{\partial u}{\partial x} = D\dfrac{\partial^2 u}{\partial x^2}$ **compare** $\Rightarrow \left\{ \begin{array}{l} \dfrac{\partial{u}}{\partial{t}}+u\dfrac{\partial u}{\partial x} = \dfrac{\mu}{\rho}\dfrac{{\partial}^2{u}}{\partial{x}^2}-\dfrac{1}{\rho}\dfrac{\partial{p}}{\partial{x}}+g_x\\ \dfrac{\partial u}{\partial t} + u\dfrac{\partial u}{\partial x} = D\dfrac{\partial^2 u}{\partial x^2} \end{array}\right .$ ---- ADE: $\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x}= D\frac{\partial^2 u}{\partial x^2}$ . $\frac{\partial u}{\partial t}$ : 局部加速度項 . $u\frac{\partial u}{\partial x}$ : 對流加速度項 . $D\frac{\partial^2 u}{\partial x^2}$ : 擴散項 NSE: $\frac{\partial{u}}{\partial{t}}+u\frac{\partial u}{\partial x} = \frac{1}{\rho}(-\frac{\partial{p}}{\partial{x}} + {\mu}\frac{{\partial}^2{u}}{\partial{x}^2})$ . $\frac{\partial u}{\partial t}$ : 局部加速度項 . $u\frac{\partial u}{\partial x}$ : 對流加速度項 . $\frac{\partial{p}}{\partial{x}}$ : 壓力項 (亦可表示成 : 動量來源的內部力量) . ${\mu}\frac{{\partial}^2{u}}{\partial{x}^2}$ : 黏滯力項 (實際上為"動量的**擴散**") 比較ADE與NSE的方程式,兩者相似的地方為,左式可表示為對流項,右式表視為擴散項,這也表示NSE也是一對流擴散方程
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up