--- tags: HW02 --- # ***Computational Hydraulics*** ## **Group 01:** N88071053 洪豪男 N88091011 黃彥鈞 ## **HW02:** Please compute the characteristics of the system of shallow water equations (1D) $\dfrac{\partial h}{\partial t}+\dfrac{\partial }{\partial x}(h \overline u)=0$ $\dfrac{\partial }{\partial t} (h \overline u)+\dfrac{\partial }{\partial x}(h \overline u^2 +\dfrac{1}{2}g_zh^2)=hg_x-\dfrac {\tau_{bx}}{\rho}$ $\Rightarrow \dfrac{\partial}{\partial t}\left (\begin{array}{cc} h \\ h\overline u \end{array}\right ) +\dfrac{\partial}{\partial x}\left (\begin{array}{cc} h\overline u \\ h\overline u^2+\dfrac{1}{2}g_zh^2 \end{array}\right ) =\left (\begin{array}{cc} 0 \\ hg_x-\dfrac{\tau_{bx}}{\rho} \end{array}\right )$ $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \Downarrow$ $\dfrac{\partial \pmb u}{\partial t}+\dfrac{\partial \pmb f}{\partial x} = \pmb \tau \quad\quad\quad\Rightarrow \quad\quad\dfrac{\partial \pmb u}{\partial t}+ \pmb M\dfrac{\partial \pmb u}{\partial x} = \pmb\tau$ where $\pmb u = \left (\begin{array}{cc} h \\m \end{array}\right )$ , $\quad\quad\pmb f = \left (\begin{array}{cc} f_1 \\ f_2 \end{array}\right ) =\left (\begin{array}{cc} m \\ \dfrac{m^2}{h}+\dfrac{1}{2}g_zh^2 \end{array}\right )$ , $\quad\quad\pmb M =\nabla\pmb f =\left (\begin{array}{cc} \dfrac{\partial f_1}{\partial h} & \dfrac{\partial f_1}{\partial m} \\ \dfrac{\partial f_2}{\partial h} & \dfrac{\partial f_2}{\partial m}\end{array}\right )$ $\Rightarrow \left\{ \begin{array}{l} \dfrac{\partial f_1}{\partial h}=\dfrac{\partial m}{\partial h}=0\\ \dfrac{\partial f_1}{\partial m}=\dfrac{\partial m}{\partial m}=1\\ \dfrac{\partial f_2}{\partial h}=\dfrac{\partial}{\partial h}(\dfrac{m^2}{h}+\dfrac{1}{2}g_zh^2)=-\dfrac{m^2}{h^2}+g_zh\\ \dfrac{\partial f_2}{\partial m}=\dfrac{\partial}{\partial m}(\dfrac{m^2}{h}+\dfrac{1}{2}g_zh^2)=\dfrac{2m}{h} \end{array}\right .$ $\Rightarrow\pmb M =\left (\begin{array}{cc} 0 & 1 \\ -\dfrac{m^2}{h^2}+g_zh & \dfrac{2m}{h} \end{array}\right )=\left (\begin{array}{cc} 0 & 1 \\ -\overline u^2+g_zh & 2\overline u \end{array}\right )$ $(\pmb M-\lambda I)=\left (\begin{array}{cc}-\lambda & 1 \\ -\overline u^2+g_zh & 2\overline u-\lambda\end{array}\right )$ $det (\pmb M-\lambda I)=0$ $\Rightarrow(-\lambda)(2\overline u-\lambda)-(-\overline u^2+g_zh)=2\overline u\lambda+\lambda^2+\overline u^2-g_zh=0$ $\Rightarrow\lambda^2-2\overline u\lambda+\overline u^2=g_zh$ $\Rightarrow(\lambda-\overline u)^2=g_zh$ $\Rightarrow\lambda=\overline u\pm\sqrt{g_zh}$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up