## 1 ### a) $\neg[\forall x(-2\leq x < 5)]=\exists x\neg(-2\leq x<5)=\exists x(x\notin[-2,5))$ ### b) $\neg[\exists x(-5<x\leq -1)]=\forall x\neg(-5<x\leq -1)=\forall x(x\notin(-5,-1])$ ## 2 ### a) let $S(x)$ indicates a student is in this class and $H(x)$ indicates a student can speak Hindi, then the statement can be expressed as $$ \exists x (S(x)\wedge H(x)) $$ ### b) let $S(x)$ indicates a student is in this class and $P(x)$ indicates a student has at least learned one programming language, then the statement can be expressed as $$ \forall x(S(x)\rightarrow P(x)) $$ ### c) let $S(x)$ indicates a student is in this class and $C(x)$ indicates a student has taken every course offered by one of the departments in this school, then the statement can be expressed as $$ \exists x(S(x)\wedge C(x)) $$ ### d) let $S(x)$ indicates a student is in this class and $CH(x)$ indicates a student has chatted with at least one other student in at least one chat group, then the statement can be expressed as $$ \forall x(S(x)\rightarrow CH(x)) $$ ## 3 7) the expression of the conjuction from $\forall xP(x)$ and $\forall xQ(x)$ are wrong, should be $\forall xP(x)\wedge \forall xQ(x)$ ## 4 |$P(x)$|$Q(x)$|$R(x)$|$P(x)\vee Q(x)$|$(\neg P(x)\wedge Q(x))\rightarrow R(x)$|$(4)\vee (5)$| |------|------|------|---------------|-------------------------------------|--| |0|0|0|0|1|0| |0|0|1|0|1|0| |0|1|0|1|0|0| |0|1|1|1|1|1| |1|0|0|1|1|1| |1|0|1|1|1|1| |1|1|0|1|1|1| |1|1|1|1|1|1| by the statement we have already eliminated some $x$ which is out of the domain, now we check the rest of them with the requirement $\neg R(x)\rightarrow P(x)$ |$P(x)$|$Q(x)$|$R(x)$|$R(x)\rightarrow P(x)$| |------|------|------|----------------------| |0|1|1|1| |1|0|0|1| |1|0|1|1| |1|1|0|1| |1|1|1|1| thus shows that the statement of the problem is always true <!---------- the problem can be transfered as $$ \begin{split} &((P(x)\vee Q(x))\wedge ((\neg P(x)\vee Q(x))\rightarrow R(x)))\rightarrow (\neg R(x)\rightarrow P(x))\\ \implies &((P(x)\vee Q(x))\wedge ((P(x)\wedge \neg Q(x))\vee R(x)))\rightarrow (R(x)\vee P(x))\\ \implies & \end{split} $$ ----------> ## 5 ### a) let $A(n)$ indicates that $n$ is even, $B(n)$ indicates that $3\times n+2$ is even, the statement can be expressed as $$ B(n)\rightarrow A(n) $$ the contrapositive is $$ \neg A(n) \rightarrow \neg B(n) $$ which is always true since when $n$ is odd, $3\times n+2$ is also odd, thus proving that when $3\times n+2$ is even, $n$ is also even (i.e. $B(n)\rightarrow A(n)$ is always true) ### b) let $A(n)$ indicates that $n$ is even, $B(n)$ indicates that $3\times n+2$ is even, to prove the statement by contradiction,we have to find a counter example of $$ \begin{split} \forall n\in \mathbb{N}, &\neg(B(n)\rightarrow A(n))\\ = &\neg(\neg B(n)\vee A(n))\\ = &\neg A(n)\wedge B(n) \end{split} $$ considering the case of $n=2$, we easily find that $3\times n +2 = 8$, which is even, making B(n) true. However, $n=2$ means that $\neg A(n)$ is false, thus further proving that the original statement $B(n)\rightarrow A(n)$ is always true ## 6 |$p$|$q$|$r$|$(p\vee q)$|$(p\wedge \neg r)$|$(p\vee q)\rightarrow (p\wedge \neg r)$| |---|---|---|-----------|------------------|-------------------------------------| |0|0|0|0|0|1 |0|0|1|0|0|1 |0|1|0|1|0|0 |0|1|1|1|0|0 |1|0|0|1|1|1 |1|0|1|1|0|0 |1|1|0|1|1|1 |1|1|1|1|0|0 ## 7 $A\times B = \lbrace(a,b)|a\in A,b\in B\rbrace$ $C\times D = \lbrace(c,d)|c\in C,d\in D\rbrace$ $A\subseteq C, B\subseteq D \implies (a\in C)\vee (b\in D)=T$ $\implies \lbrace(a,b)|a\in A,b\in B\rbrace\subseteq C\times D$ ## 8 ### a) ![](https://media.discordapp.net/attachments/1161339161622630480/1215661066881728563/IMG_5147.png?ex=65fd8f98&is=65eb1a98&hm=80bfa7d3b44f222ab577ac1d2a97d4b1e907474755aa7938116a6182fc5b99f3&=&format=webp&quality=lossless&width=707&height=701 =400x400) ### b) ![](https://media.discordapp.net/attachments/1161339161622630480/1215661433103319100/IMG_5148.png?ex=65fd8fef&is=65eb1aef&hm=b4b870fcfb8d8ddec95f891582604e1cf3afa50014a7ee2d3248b81a2cbd433c&=&format=webp&quality=lossless&width=686&height=701 =400x400) ### c) ![](https://media.discordapp.net/attachments/1161339161622630480/1215661754651123792/IMG_5149.png?ex=65fd903c&is=65eb1b3c&hm=373d23671b18583b431ec61dec4ad51f6e6393faceeab336fbb77a19832fb041&=&format=webp&quality=lossless&width=699&height=701 =400x400) pardon my drawing, I'm not really good at it ## 9 $A\oplus B=\lbrace x|(x\in A)\oplus(x\in B)\rbrace=\lbrace x|((x\in A)\vee(x\in B))\wedge \neg ((x\in A)\wedge (x\in B))\rbrace$ ## 10 ### a) **True** $$ \begin{split} &\lbrace a,a\rbrace \cup \lbrace a,a,a\rbrace\\ =&\lbrace a\rbrace \cup \lbrace a\rbrace\\ =&\lbrace a\rbrace\\ =&\lbrace a,a,a,a,a\rbrace \end{split} $$ as A is an ordinary set, the number of appearance doesn't effect the content of it. ### b) **True** as explained in the previous solution ### c) **True** $$ \begin{split} &\lbrace a,a,a\rbrace \cap \lbrace a,a\rbrace\\ =&\lbrace a\rbrace \cap \lbrace a\rbrace\\ =&\lbrace a\rbrace\\ =&\lbrace a,a\rbrace \end{split} $$ ### d) **True** as explained in the previous solution ### e) **False** $$ \begin{split} &\lbrace a,a,a\rbrace - \lbrace a,a\rbrace\\ =&\lbrace a\rbrace-\lbrace a\rbrace\\ =&\emptyset\\ \ne&\lbrace a\rbrace \end{split} $$