Math 181 Miniproject 3: Texting Lesson.md --- My lesson Topic === <style> body { background-color: #eeeeee; } h1 { color: maroon; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> What is Local Linerization? </div></div> <div><div class="alert blue"> Local Linerization is the generalization of tangent plane functions; one that can apply to multivariable functions with any number of inputs. You are just finding an equation for a tangent line. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Okay. </div></div> <div><img class="left"/><div class="alert gray"> Then what would be: Find the local linerization for $f(x)=1/x$ given that $f'(x)=-1/2^2$ at the point x=2. </div></div> <div><div class="alert blue"> What is needed is: $f(x)=1/x, f'(x)=-1/x^2$ at x=2. It does not matter the word problem as long as you can figure out the $f(x)$ and then the $f'(x)$ and identify at what point. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Makes sense.....but how do I do it? </div></div> <div><div class="alert blue"> You will need the formula $L(x)= f(x)+f'(x)(x-x_1)$ The L stands for Local Linerization. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> So then it should be L(x)=f(2)f'(2)(x-2) </div></div> <div><div class="alert blue"> Yes that is right. The next step would be to plug in the equations. ****There should only be one x once everything is filled in**** </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> $f(x)=1/2+(-1/2^2)(x-2)$ =$1/2+(-1/4)(x-2)$ Is that it??? Or did I miss something </div></div> <div><div class="alert blue"> Yep that is it since all you needed to do was find that equation for the point x=2. </div><img class="right"/></div> --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.