# Intro to Special Relativity : Seminar Saturday ## Spacetime Overview - Example of surveyors: invariant distance $(\Delta x_1)^2 = (\Delta x_2)^2$ - Example of spacetime: invariant interval $(c\Delta t_1)^2 - (\Delta x_1)^2 = (c\Delta t_2)^2 - (\Delta x_2)^2 = (\text{interval})^2$ - Why do we need invariants? ## Events and Intervals - Wristwatch time, proper time, local time - Space-like vs time-like intervals ## Units of space and time - Space and time have the **same** units in our framework. - $c$ is a conversion factor, like factor between feet and metres, accident of history ### Feet and Metre example $$\begin{align} 10 \text{ft} &= 3.048 \text{m} \\ \implies \frac{10 \text{ft}}{3.048 \text{m}} &= \frac{3.048 \text{m}}{10 \text{ft}} = 1 [\text{unitless}] \end{align}$$ If we want to convert 3.14 feet to meters: $$\begin{align} 3.14 \text{m} &= 3.14 \text{m} * 1[\text{unitless}] \\ &= 3.14 \text{m} * \frac{10 \text{ft}}{3.048 \text{m}} \\ &= 3.14 * \frac{10 \text{ft}}{3.048} \\ &= \frac{3.14 * 10}{3.048} \text{ft} \\ &= 0.957072 \text{ft}\\ \end{align} $$ ### Meters and seconds example $$\begin{align} 1 \text{s} &= c \text{ m} \\ \implies \frac{1 \text{s}}{c\text{ m}} &= \frac{c\text{ m}}{1 \text{s}} = 1 [\text{unitless}] \end{align}$$ If we want to convert 3.14 s to meters: $$\begin{align} 3.14 \text{s} &= 3.14 \text{s} * 1[\text{unitless}] \\ &= 3.14 \text{s} * \frac{3 \times 10^8 \text{m}}{1 \text{s}} \\ &= 3.14 * \frac{3 \times 10^8 \text{m}}{1} \\ &= \frac{3.14 * 3 \times 10^8}{1} \text{m} \\ &= 9.42 \times 10^8 \text{m}\\ \end{align} $$ ### Example with same units of time and space A proton moving at 3/4 light speed passes through 2 detectors in a laboratory placed 2 metres apart. The events 1 and 2 are the transits through the detectors. #### Interval Lab time between events = $\frac{2m}{(3c/4) ms^{-1}}$ = $\frac{8}{3c}s$ **of time** = $8.89 \times 10^{-9} s$ = $\frac{8}{3c}s \times \frac{c m}{1s}$ = $\frac{8}{3} m$ **of time** $$\begin{align} (\text{proton interval})^2 &= (\text{lab interval})^2 \\ (\text{lab interval})^2 &= (\frac{8}{3}m)^2 - (2m)^2 \\ &= (2.66667m)^2 - (2m)^2 \\ &= (7.1111 - 4) (\text{metres})^2 \\ &= 3.1111 (\text{metres})^2 \\ \end{align} $$ #### Time in proton frame $$\begin{align} (\text{proton interval})^2 &= (\text{lab interval})^2 \\ (\text{proton time})^2 - (\text{proton distance})^2 &= 3.1111 m^2 \\ (\text{proton time})^2 - (0 m)^2 &= 3.1111 m^2 \\ \text{proton time} &= 1.764 m \\ \text{proton time} &= 1.764 m \times \frac{1s}{c \text{ m}} \\ \text{proton time} &= 5.88 \times 10^{-9} s \\ \end{align} $$ ### Comments - Time dilation follows from invariance of interval (which is a consequence of invariance of light speed) - Space and time have the _same units_ but are not the same in quality, as seen by the sign of the metric ## Measuring space time - Framework of metre sticks and clocks - Coordinating all the clocks using a light pulse - Events at the "same place" versus at the "same time" ## Free float frames - Free float, inertial frame - Any frame in which the Law of Inertia applies - Free float frames are local in nature - Local in time and local in space ## Special Relativity All inertial frames are equivalent. - An observer can verify physics by making observations from his own frame. - All inertial observers will see the same laws of physics. ## Lorentz Transform (some math)