# Filter Spatial Channel Weighting + Author : 利醬 + Date : 2021/08/13 ## Source International Journal of Pattern Recognition and Artificial Intelligence 2021 - Filtering deep convolutional features for image retrieval ## PyTorch Implementation <https://github.com/leonIceHot/Computer-Vision/tree/master/Filtering-Spatial-Channel-Weighting> Project Architecture ![](https://i.imgur.com/b0TyQOe.png) Filtering on spatial channel weighting (FSCW) ----- + ![](https://i.imgur.com/ocwTmlQ.png) + Preprocessing + Model + Filter + Spatial + Channel Weighting + Image Representation ### Preprocssing + Dataset : + Oxford5K + The Oxford Buildings Dataset + <https://www.robots.ox.ac.uk/~vgg/data/oxbuildings/> + Paris6K 、 Paris106K + Holdout validation + Total : 5063 images  + Train : 0.7 (3545) + Validation : 0.3 (1518) + Test : 0.5 (2531) ### Model Pytorch implementation of cnn network + <https://github.com/shanglianlm0525/PyTorch-Networks> + VGG + ![](https://i.imgur.com/KelDyLu.png) + ![](https://i.imgur.com/ufqD9YB.png) + ResNet + ![](https://i.imgur.com/thTbu8v.png) ### Filtering the feature maps ![](https://i.imgur.com/nabZn7i.png) We extract the feature maps in the pool5 layer of VGG16 model, Whereas we extract the feature maps in the res5c_relu layer of the ResNet101 model + 𝑋 ∈ 𝑅(𝑊×𝐻×𝑁) be the 3-dim feature tensor extracted + N = 512 feature maps + W: Width of a feature map + H: Height of a feature map ![](https://i.imgur.com/BuDYfaQ.png) ![](https://i.imgur.com/KG9HWXI.png) ![](https://i.imgur.com/aRnQRMd.png) ### Spatial Weighting ![](https://i.imgur.com/gYqGg10.png) ![](https://i.imgur.com/CSp4RHL.png) ![](https://i.imgur.com/t35H8DK.png) ![](https://i.imgur.com/MZc9RQU.png) ### Channel Weight ### Image Representation ![](https://i.imgur.com/0zKJuiv.png) 1. Sum-Pooling ![](https://i.imgur.com/6dQn3w4.png) 2. Global representation vector ![](https://i.imgur.com/FWo5i6W.png) 3. FSCW descriptor + PCA Whitening + Theorem + <http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/> + <http://ufldl.stanford.edu/tutorial/unsupervised/ExercisePCAWhitening/> + <https://www.twblogs.net/a/5b7e231c2b717768385582bf> + Implementation + sklearn.decomposition.PCA + <https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html> + L2 Normalization ## Experiment ### Query expansion (QE)